納米CMOS邏輯電路單粒子脈沖窄化效應研究
本文選題:單粒子效應 + 多位翻轉; 參考:《深圳大學》2017年碩士論文
【摘要】:隨著集成電路朝著更小的工藝尺寸,更高及集成度發(fā)展時,輻射環(huán)境中的粒子入射的影響越來越嚴重。因為粒子入射造成的單粒子效應已經(jīng)成為航空航天電路失效的最重要原因之一。工藝尺寸的縮減使得節(jié)點之間的間距減小,導致在單粒子轟擊發(fā)生時,節(jié)點之間的電荷共享越來越明顯,由此引發(fā)的多位翻轉使得一些傳統(tǒng)的抗輻射設計如加大器件之間的間距,保護環(huán)等防護方法失效;陔姾晒蚕砗投辔环D的基礎上提出的脈沖窄化效應,是一種新型的防輻射設計思路。本文基于90納米和65納米CMOS雙阱工藝,研究了90納米工藝下基于脈沖窄化的抗輻射版圖設計方法,65納米工藝下基礎邏輯電路的版圖設計方法,65納米工藝下復合邏輯電路的版圖設計方法,65納米工藝下抗輻射電路版圖設計方法。以此總結出脈沖窄化在版圖設計中的應用條件與準則。主要內(nèi)容如下:(1)通過TCAD軟件進行90納米工藝和65納米工藝的三維器件建模仿真。在90納米工藝下,通過設置不同的器件間距和不同的入射粒子LET值的實驗。解釋在大的器件間距或者小的入射粒子LET值的情況下,輸出節(jié)點出現(xiàn)的雙峰電壓現(xiàn)象。基于脈沖窄化的工作原理,提出或門PMOS版圖部分適用脈沖窄化的冗余器件設計方法,與門的NMOS版圖部分適用冗余設計方法,提出最小間距設計方法和高LET值器件不敏感的觀點。(2)對比或門PMOS部分在90納米和65納米的粒子入射實驗結果。提出隨著器件工藝尺寸的縮減,或門的PMOS部分使用傳統(tǒng)版圖即可抵御單粒子脈沖無需冗余設計。對比與門NMOS部分在90納米和65納米的粒子入射實驗結果,提出隨著器件工藝尺寸的縮減,與門的NMOS部分使用冗余設計的效果會越來越好。(3)在65納米工藝,進行復合邏輯電路的三維模型仿真實驗。對比邏輯等效電路替換和復合邏輯電路的冗余設計兩種方法,證明冗余設計方法在設計的簡易度和穩(wěn)定性上更為優(yōu)秀。應用脈沖窄化的設計方法的建議:1.復雜的邏輯電路表達式應該通過邏輯等效盡量轉換成與門,或門的組合2.觀察版圖結構,不管在PMOS還是NMOS區(qū)域,器件結構出現(xiàn)為串聯(lián)結構,即可通過冗余設計進行來加強脈沖窄化,抵御單粒子脈沖。最后,本文對脈沖窄化在更小的工藝尺寸的應用和NMOS器件的防護設計的研究方向進行展望。
[Abstract]:With the development of integrated circuits towards smaller process size, higher integration, the impact of particle incidence in radiation environment is becoming more and more serious. The single particle effect caused by particle incidence has become one of the most important reasons for the failure of aerospace circuits. The reduction of process size reduces the distance between nodes, resulting in more and more charge sharing between nodes when single particle bombardment occurs. The multi-bit flip caused by this causes some traditional anti-radiation design methods, such as increasing the distance between devices, protection ring and so on, to invalidate the traditional anti-radiation design methods. The pulse narrowing effect based on charge sharing and multi-bit inversion is a new design idea of radiation protection. Based on 90 nm and 65 nm CMOS double well process, The layout Design method of basic Logic Circuits in 90 nm process based on Pulse narrowing the layout Design method of compound Logic Circuits under 65 nm process Radiation circuit layout design method. The application conditions and criteria of pulse narrowing in layout design are summarized. The main contents are as follows: 1) 3D device modeling and simulation of 90 nm process and 65 nm process are carried out by TCAD software. Under 90 nm process, different device spacing and LET value of incident particles were set. This paper explains the bimodal voltage phenomenon at the output node in the case of large device spacing or small incident particle LET value. Based on the working principle of pulse narrowing, this paper proposes a design method of redundant device which is suitable for pulse narrowing in PMOS layout, and redundancy design method in NMOS layout part of gate. A minimum spacing design method and an insensitive viewpoint of high LET value devices are proposed to compare the experimental results of the gate PMOS part at 90 nm and 65 nm particles. It is proposed that with the reduction of the process size of the device or the use of traditional layout in the PMOS part of the gate, the single particle pulse can be resisted without redundancy. Comparing with the experimental results of the gate NMOS part at 90 nm and 65 nm particle incidence, it is proposed that with the reduction of the device process size, the effect of using redundant design with the NMOS part of the gate will be better and better in the 65 nm process. The three-dimensional model simulation experiment of compound logic circuit is carried out. Comparing the two methods of logic equivalent circuit replacement and redundant design of compound logic circuit, it is proved that the redundancy design method is more excellent in design simplicity and stability. A proposal for applying the design method of pulse narrowing: 1. Complex logic circuit expressions should be converted as much as possible into gates, or combinations of gates, through logical equivalence. In the PMOS or NMOS region, the device structure appears in series structure, which can enhance the pulse narrowing by redundant design and resist the single particle pulse. Finally, the application of pulse narrowing in smaller process size and the research direction of NMOS device protection design are prospected.
【學位授予單位】:深圳大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN791
【相似文獻】
相關期刊論文 前10條
1 易尚紅;邏輯電路中競爭現(xiàn)象的普遍性[J];株洲師范高等?茖W校學報;2003年05期
2 ;復旦大學具有自主知識產(chǎn)權的可編程邏輯電路通過專家鑒定[J];工業(yè)控制計算機;2004年09期
3 劉杰;韋永梅;;非鐘控狀態(tài)下的判優(yōu)邏輯電路研究[J];太原科技大學學報;2005年04期
4 孫瑋;;邏輯電路系列的比較[J];集成電路應用;1990年01期
5 丁衛(wèi)東;;“簡單邏輯電路”教學要略[J];物理教師;2010年11期
6 李如虎;;初探簡單邏輯電路的分析方法[J];中學物理教學參考;2010年09期
7 鮑翔;;簡單邏輯電路在生活中的應用[J];物理教師;2011年04期
8 ;邏輯電路、脈沖電路[J];電子科技文摘;2000年01期
9 富鋼,富程;可編程邏輯電路實驗儀的開發(fā)[J];微處理機;2001年02期
10 劉宏忠,王新民,劉海峰;邏輯電路化簡方法的探討[J];河北大學學報(自然科學版);2004年03期
相關會議論文 前9條
1 趙駿;陳漢武;陳開中;肖芳英;;可逆邏輯電路多余門錯誤的檢測[A];全國第十三次光纖通信暨第十四屆集成光學學術會議論文集[C];2007年
2 莊保安;王鋒;顧樹棣;王煥玉;沈定力;;一種靈活快速的可編程多功能邏輯電路[A];第7屆全國核電子學與核探測技術學術年會論文集(二)[C];1994年
3 趙帆;姜巖峰;;基于深亞微米工藝的多米諾邏輯電路設計[A];2009通信理論與技術新發(fā)展——第十四屆全國青年通信學術會議論文集[C];2009年
4 陳開中;肖芳英;李志強;陳漢武;;基于群論的可逆邏輯電路綜合方法的研究[A];全國第十三次光纖通信暨第十四屆集成光學學術會議論文集[C];2007年
5 袁小龍;張文淵;郄利波;;一種新的邏輯電路初始劃分算法[A];計算機技術與應用進展——全國第17屆計算機科學與技術應用(CACIS)學術會議論文集(下冊)[C];2006年
6 陳婷婷;李哲英;;USB2.0數(shù)據(jù)傳輸環(huán)節(jié)邏輯電路低功耗設計[A];全國第十屆信號與信息處理、第四屆DSP應用技術聯(lián)合學術會議論文集[C];2006年
7 白德風;呂長志;張U,
本文編號:1890932
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1890932.html