基于同步開(kāi)關(guān)電感技術(shù)的能量回收電路研究
本文選題:壓電振動(dòng) + 能量回收; 參考:《大連理工大學(xué)》2016年碩士論文
【摘要】:能量回收技術(shù)是無(wú)線(xiàn)系統(tǒng)及便攜式電子設(shè)備向微型化和實(shí)用化發(fā)展的關(guān)鍵技術(shù)之一。在各類(lèi)能量回收技術(shù)中,振動(dòng)能量回收技術(shù)因其能量密度大、輸出功率高、易于系統(tǒng)集成化等優(yōu)點(diǎn),在MEMS應(yīng)用方面得到了迅速發(fā)展。本文基于CMOS集成電路,提出了單級(jí)、雙級(jí)兩個(gè)新的非線(xiàn)性能量回收接口電路,使其成為一種高效、低功耗、集成度高的能量回收系統(tǒng)。主要研究?jī)?nèi)容和所得到的結(jié)論如下:(1)推導(dǎo)了標(biāo)準(zhǔn)能量收集電路(Standard)、同步電荷提取電路(SECE)、并聯(lián)同步開(kāi)關(guān)電感電路(P-SSHI)和串聯(lián)同步開(kāi)關(guān)電感電路(S-SSHI)四種經(jīng)典接口電路的理論回收功率,分析了它們的最大輸出功率與最佳負(fù)載匹配范圍。結(jié)果表明,四種經(jīng)典接口電路中P-SSHI電路回收功率最大,而SECE電路回收功率不受負(fù)載變化影響。(2)基于并聯(lián)同步開(kāi)關(guān)電感(P-SSHI)接口電路,設(shè)計(jì)了一種單級(jí)的高效壓電能量收集芯片。芯片包括P-SSHI電路、控制電路和信號(hào)調(diào)理電路。芯片具有開(kāi)關(guān)控制信號(hào)較少、控制電路結(jié)構(gòu)簡(jiǎn)單、穩(wěn)定性好的優(yōu)點(diǎn)。輸出端的設(shè)計(jì)能夠有效地抑制回流效應(yīng),提高了能量收集效率。基于0.5 μm CMOS工藝仿真結(jié)果顯示在相同激勵(lì)下該芯片收集的最大功率可達(dá)178.2μW,是傳統(tǒng)AC-DC整流電路的10倍以上(3)設(shè)計(jì)了一種新的雙級(jí)能量回收接口電路,詳細(xì)闡明了此接口電路的工作過(guò)程,推導(dǎo)了雙級(jí)能量回收接口電路的理論回收功率,分析了使能量回收功率最大的控制開(kāi)關(guān)的最優(yōu)導(dǎo)通時(shí)間。此雙級(jí)能量回收接口電路不僅回收功率大而且克服了前面單級(jí)能量回收電路輸出功率受負(fù)載影響的缺點(diǎn)。通過(guò)Cadence仿真驗(yàn)證了該電路的功能符合設(shè)計(jì)要求。(4)搭建能量回收電路實(shí)驗(yàn)平臺(tái),分別測(cè)得恒定激振位移條件下四種經(jīng)典單級(jí)能量回收電路的實(shí)際回收功率并驗(yàn)證實(shí)際回收情況和理論分析的吻合度。
[Abstract]:Energy recovery technology is one of the key technologies for the miniaturization and application of wireless systems and portable electronic devices. Among all kinds of energy recovery technologies, vibration energy recovery technology has been developed rapidly in MEMS applications because of its advantages of high energy density, high output power and easy system integration. Based on CMOS integrated circuit, this paper presents two new nonlinear energy recovery interface circuits, single-stage and two-stage, which make it a high-efficiency, low-power and high-integration energy recovery system. The main contents and conclusions are as follows: (1) the theoretical recovery power of four classical interface circuits, standard energy collection circuit, synchronous charge extraction circuit, parallel synchronous switch inductor circuit and series synchronous switch inductor circuit, is derived. The matching range between the maximum output power and the optimal load is analyzed. The results show that the recovery power of P-SSHI circuit is the largest among the four classical interface circuits, while the recovery power of SECE circuit is not affected by the load change. 2) based on the parallel synchronous switch inductor P-SSHII interface circuit, a single stage high efficiency piezoelectric energy collection chip is designed. The chip includes P-SSHI circuit, control circuit and signal conditioning circuit. The chip has the advantages of less switching control signal, simple control circuit structure and good stability. The output design can effectively suppress the reflux effect and improve the energy collection efficiency. Based on the simulation results of 0.5 渭 m CMOS process, the maximum power collected by the chip under the same excitation is up to 178.2 渭 W, which is more than 10 times that of the traditional AC-DC rectifier circuit.) A new two-stage energy recovery interface circuit is designed. The working process of the interface circuit is described in detail, the theoretical recovery power of the two-stage energy recovery interface circuit is deduced, and the optimal on-on time of the control switch with the maximum energy recovery power is analyzed. The two-stage energy recovery interface circuit not only has a large recovery power, but also overcomes the shortcoming that the output power of the single stage energy recovery circuit is affected by the load. The Cadence simulation shows that the function of the circuit meets the design requirements. (4) the experimental platform of energy recovery circuit is built. The actual recovery power of four classical single-stage energy recovery circuits under the condition of constant excitation displacement is measured and the coincidence between the actual recovery and the theoretical analysis is verified.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TM619;TN402
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李政;王瑞;唐禎安;余雋;程義軍;巢明;;高效壓電能收集電路仿真[J];傳感技術(shù)學(xué)報(bào);2014年08期
2 田勇;唐禎安;喻言;;基于無(wú)線(xiàn)傳感器網(wǎng)絡(luò)的芯片生產(chǎn)環(huán)境監(jiān)測(cè)系統(tǒng)[J];傳感技術(shù)學(xué)報(bào);2013年10期
3 王夢(mèng)莉;高佳林;汪朋;;無(wú)線(xiàn)傳感器網(wǎng)絡(luò)技術(shù)與應(yīng)用[J];數(shù)字技術(shù)與應(yīng)用;2013年07期
4 劉祥建;陳仁文;;壓電振動(dòng)能量收集裝置研究現(xiàn)狀及發(fā)展趨勢(shì)[J];振動(dòng)與沖擊;2012年16期
5 朱莉婭;陳仁文;雷嫻;;壓電振動(dòng)發(fā)電機(jī)的研究現(xiàn)狀與發(fā)展趨勢(shì)[J];中國(guó)機(jī)械工程;2011年24期
6 唐可洪;闞君武;朱國(guó)仁;邵承會(huì);楊志剛;程光明;;遙控器用壓電發(fā)電裝置的供電特性[J];光學(xué)精密工程;2008年01期
7 喻言;歐進(jìn)萍;;海洋平臺(tái)結(jié)構(gòu)振動(dòng)監(jiān)測(cè)的無(wú)線(xiàn)傳感實(shí)驗(yàn)研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2007年02期
,本文編號(hào):1874001
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1874001.html