天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電子信息論文 >

極化庫(kù)侖場(chǎng)散射對(duì)GaN基電子器件柵源和柵漏寄生電阻的影響研究

發(fā)布時(shí)間:2018-05-05 14:32

  本文選題:AlGaN/GaN高電子遷移率晶體管 + 極化庫(kù)侖場(chǎng)散射; 參考:《山東大學(xué)》2017年碩士論文


【摘要】:AlGaN/GaN高電子遷移率晶體管(AlGaN/GaN HEMTs)具有很多優(yōu)秀的性能特性,例如高擊穿場(chǎng)強(qiáng)、高輸出功率、高飽和電子漂移速度。此外,AlGaN/GaN異質(zhì)結(jié)材料的自發(fā)和壓電極化效應(yīng)使其在不摻雜的情況下,仍可產(chǎn)生密度高達(dá)1013cm-2的二維電子氣,因此在高頻、大功率集成電路中的應(yīng)用十分廣泛。隨著新器件結(jié)構(gòu)和新器件工藝的運(yùn)用,AlGaN/GaN HEMTs器件性能越來(lái)越接近氮化鎵材料物理特性的極限。隨著對(duì)器件內(nèi)部等效電路研究逐漸深入,最近研究人員發(fā)現(xiàn)器件非本征參數(shù)寄生電阻嚴(yán)重影響器件的高頻性能和可靠性。其中器件在大信號(hào)下的截止振蕩頻率fT和非本征跨導(dǎo)gm,嚴(yán)重受制于寄生電阻,制約著器件在噪聲容限、開(kāi)態(tài)電阻和傳輸延時(shí)時(shí)間等指標(biāo)上的進(jìn)一步優(yōu)化。為了解寄生電阻的產(chǎn)生原因和作用機(jī)制,本文對(duì)溝道二維電子氣電子在溝道中輸運(yùn)所受的主要散射作用進(jìn)行討論,其中包括極化庫(kù)侖場(chǎng)(PCF)散射、極化光學(xué)聲子散射、界面粗糙度散射和壓電散射,并重點(diǎn)就PCF散射進(jìn)行研究。PCF散射與柵源偏壓、源漏偏壓和柵面積均相關(guān),導(dǎo)致柵源和柵漏寄生電阻RS和RD也與柵源偏壓、源漏偏壓和柵面積相關(guān),從而對(duì)應(yīng)電流-電壓(I-V)輸出特性曲線的線性區(qū)和飽和區(qū)R和RD也不同。本論文分別研究了 AlGaN/GaN HEMTs器件線性區(qū)寄生電阻RS和飽和區(qū)寄生電阻RS與RD,研究了線性區(qū)RS與柵長(zhǎng)和正向柵源偏壓的關(guān)聯(lián)關(guān)系,并研究得到了飽和區(qū)確定RS和RD的方法。我們制備出不同柵面積、不同柵源間距的AlGaN/GaN HEMTs,在不同外加?xùn)旁雌珘簵l件下測(cè)量出寄生電阻,并對(duì)器件溝道內(nèi)各種散射機(jī)制展開(kāi)分析。最后,經(jīng)過(guò)散射理論模型計(jì)算的寄生電阻數(shù)值與實(shí)驗(yàn)測(cè)試值的較好擬合證實(shí)了 PCF散射是Rs的重要影響因素,AlGaN/GaN HEMTs的寄生電阻與柵源偏壓、源漏偏壓和柵面積密切相關(guān)。具體包括以下內(nèi)容:1.極化庫(kù)侖場(chǎng)散射對(duì)器件線性區(qū)柵源溝道寄生電阻Rs的影響器件工藝之后,器件正常歐姆接觸退火工藝和柵極外加偏壓會(huì)改變AlGaN/GaN異質(zhì)界面處的極化電荷均勻分布狀態(tài),導(dǎo)致附加極化電荷的產(chǎn)生,引起PCF散射。經(jīng)TLM法測(cè)試,我們發(fā)現(xiàn)相同襯底上不同測(cè)試區(qū)域的器件歐姆接觸存在差異,表明同一片襯底上制作的歐姆接觸并不完全一致。歐姆接觸的質(zhì)量差異會(huì)干擾我們對(duì)器件在外加偏壓時(shí)柵下AlGaN勢(shì)壘層區(qū)域處由于逆壓電效應(yīng)產(chǎn)生的附加極化電荷的研究。為了減小歐姆接觸質(zhì)量差異的影響,我們?cè)O(shè)計(jì)了共用源極歐姆接觸的電子器件。由于同個(gè)臺(tái)面上的左右兩個(gè)柵極接觸共用同一個(gè)源極歐姆接觸,從而消除了不同歐姆接觸質(zhì)量差異的影響,由此可準(zhǔn)確研究柵面積和柵源偏壓對(duì)RS的影響。在歐姆接觸下方區(qū)域,金屬原子擴(kuò)散作用減弱了AlGaN勢(shì)壘層的壓電極化強(qiáng)度,并且歐姆接觸下方的附加極化電荷△σ1是一個(gè)與柵源偏壓無(wú)關(guān)的負(fù)值。在VGS0的情況下,柵下區(qū)域引入的隨柵源偏壓變化且為正值的△σ3和歐姆區(qū)域引入的不變且為負(fù)值的△σ1共同決定PCF散射勢(shì)。當(dāng)VGS增大,數(shù)值為正且增大的△σ3逐漸抵消數(shù)值為負(fù)且不變的Aσ1,最終Aσ3成為PCF散射勢(shì)的主導(dǎo)因素。對(duì)于同個(gè)樣品內(nèi)共用同一源極歐姆接觸的兩個(gè)AlGaN/GaN HEMTs器件,使用柵探針?lè)y(cè)量RS時(shí)保持VGS在同一變化范圍以保證各器件中的柵下區(qū)域的△σ3相等。柵源間距相同,對(duì)于更大柵面積的器件柵下附加極化電荷總量更大,增強(qiáng)了 PCF散射勢(shì)的強(qiáng)度進(jìn)而導(dǎo)致RS的增大。柵面積相同,器件柵下附加極化電荷總量相同,然而更大柵源間距的器件附加散射勢(shì)作用區(qū)域增大,降低了散射的強(qiáng)度,所以RS隨VGS變化幅度減小。最后,使用PCF散射理論模型,我們計(jì)算了各尺寸器件不同偏壓下的寄生電阻RS,并與器件寄生電阻的測(cè)試值進(jìn)行對(duì)比,較好的擬合效果證實(shí)了用PCF散射理論解釋RS形成機(jī)制的合理性,也明確表明AlGaN/GaN HEMTs器件線性區(qū)RS與柵源偏壓和柵面積密切相關(guān)。2.極化庫(kù)侖場(chǎng)散射對(duì)長(zhǎng)柵長(zhǎng)器件飽和區(qū)寄生電阻的影響PCF散射是影響AlGaN/GaN HEMTs器件性能的重要散射機(jī)制。然而對(duì)于長(zhǎng)柵長(zhǎng)器件,對(duì)不同靜態(tài)偏置狀態(tài)下的飽和區(qū)寄生溝道電阻的研究并沒(méi)有考慮PCF散射的影響。由此,考慮PCF散射,并得到AlGaN/GaN HEMTs器件飽和區(qū)寄生電阻對(duì)提升器件特性至關(guān)重要。與深亞微米柵長(zhǎng)器件不同,長(zhǎng)柵長(zhǎng)器件中源漏之間的電場(chǎng)不能使溝道載流子達(dá)到飽和漂移速度。因此,短?hào)砰L(zhǎng)器件柵下的線性電勢(shì)分布并不適用于長(zhǎng)柵長(zhǎng)器件。長(zhǎng)柵長(zhǎng)器件的溝道電勢(shì)分布情況需要進(jìn)一步研究。其一,在I-V輸出特性曲線中選取VGS=-3V-0V,VDS=8V的靜態(tài)偏置點(diǎn),并使用改進(jìn)的柵探針?lè)y(cè)得器件的RS和RD。其二,根據(jù)寬禁帶半導(dǎo)體在制備肖特基柵極下的電荷控制模型,飽和區(qū)(VDS= 8V)時(shí)的柵下溝道電勢(shì)分布被分為兩個(gè)部分。緩變溝道近似溝道區(qū)域Ⅰ和夾斷溝道區(qū)域Ⅱ分別對(duì)應(yīng)柵下電勢(shì)從VC(0)變到Vknee和從Vknee變到VC(L)的區(qū)域。VC(0)和VC(L)分別是源、漏測(cè)柵極邊緣處的溝道電勢(shì),Vknee近似認(rèn)為是溝道恰好夾斷的溝道電勢(shì)。然后,使用PCF散射理論分析和確定AlGaN/GaN HEMTs器件溝道各處的附加極化電荷△σ的分布及其決定的附加散射勢(shì)。最后,綜合考慮極化光學(xué)聲子散射、界面粗糙度散射、壓電散射和極化庫(kù)侖場(chǎng)散射在內(nèi)的各種散射機(jī)制,模擬計(jì)算出不同偏置狀態(tài)下的RS和RD。理論計(jì)算結(jié)果和測(cè)試得到的RS和RD呈現(xiàn)較好的一致性,證明了理論計(jì)算的準(zhǔn)確性。對(duì)于樣品3中的器件,歐姆接觸下方區(qū)域的附加極化電荷△σ1是一個(gè)與柵源偏壓無(wú)關(guān)的負(fù)值。各偏置狀態(tài)下的VGS為負(fù)值,因此柵下區(qū)域附加極化電荷△σ3為負(fù)值。取值為負(fù)值的△σ1和△σ3共同確定了 PCF附加散射勢(shì)。各測(cè)試點(diǎn)的柵源偏壓變化范圍是-3V到0V,逐漸減小的△σ3和固定不變的△σ1減弱了 PCF散射勢(shì)的強(qiáng)度,導(dǎo)致RS和RD的減小。另外,對(duì)于其他幾種散射機(jī)制,非柵極溝道區(qū)域內(nèi)電子溫度Te和二維電子氣密度n2D決定了它們的散射強(qiáng)度。由于樣品3中器件的電流較小不足以導(dǎo)致載流子明顯的熱聲子效應(yīng)和自熱效應(yīng)。常溫條件下,柵源和柵漏之間的溝道處的n2D在不同柵源偏壓VGS下為固定值。因此,各不同靜態(tài)偏置狀態(tài)下RS和RD的差異只能歸因于PCF散射勢(shì)的差異。這些研究結(jié)果證實(shí)由于PCF散射,AlGaN/GaN HEMTs器件寄生電阻RS和RD與柵源和源漏偏壓相關(guān);研究得到的確定AlGaN/GaN HEMTs器件飽和區(qū)寄生電阻RS和RD的方法是正確可行的方法。
[Abstract]:The AlGaN/GaN high electron mobility transistor (AlGaN/GaN HEMTs) has many excellent performance characteristics, such as high breakdown field strength, high output power and high saturation electron drift speed. In addition, the spontaneous and piezoelectric polarization effect of AlGaN/GaN heterojunction materials makes it still produce a two-dimensional electron gas with a density up to 1013cm-2 in the absence of doping. This is widely used in high frequency and high-power integrated circuits. With the application of new device structure and new device technology, the performance of AlGaN/GaN HEMTs devices is getting closer to the limit of physical properties of gallium nitride materials. With the study of the internal equivalent circuit of the device, the recent researchers found that the device is not the intrinsic parameter parasitic resistance. The high frequency performance and reliability of the device are seriously affected. The cut-off oscillation frequency fT and the non eigentransconductance GM under the large signal are seriously affected by the parasitic resistance, which restricts the further optimization of the device in the noise tolerance, open state resistance and transmission delay time. In order to solve the cause and mechanism of the generation resistance, this paper is concerned. The main scattering effects of the channel two-dimensional electron gas electron transport in the channel are discussed, including polarized Coulomb field (PCF) scattering, polarization optical phonon scattering, interface roughness scattering and piezoelectric scattering, and the study of PCF scattering is focused on.PCF scattering with gate source bias, source leakage bias and gate area, leading to gate source and grid. The leakage parasitic resistance RS and RD are also related to the gate bias voltage, the source leakage bias and the gate area, thus the linear region of the current voltage (I-V) output characteristic curve and the saturated zone R and RD are different. This paper studies the parasitic resistance RS and the parasitic resistance RS and RD of the linear region of the AlGaN/GaN HEMTs device, respectively, and studies the linear region RS and the gate length and the forward direction. The relationship between the bias voltage of the gate and the method of determining the RS and RD in the saturation area is studied. We have prepared the AlGaN/GaN HEMTs with different gate area and different gate spacing, and measured the parasitic resistance under the different bias voltage of the grid source, and analyzed the scattering mechanism in the channel. Finally, the scattering theory model was used to calculate the distribution. The good fitting of the value of the raw resistance and the test test confirmed that the PCF scattering is an important factor in the Rs. The parasitic resistance of the AlGaN/GaN HEMTs is closely related to the grid source bias, the source leakage bias and the gate area. The following contents are included: 1. the influence of the polarizing Coulomb scattering on the parasitic resistance Rs of the linear gate channel of the device, after the device process, The normal ohm contact annealing process and the grid applied bias will change the uniform distribution of polarization charge at the AlGaN/GaN heterointerface and lead to the generation of the additional polarized charge and cause the PCF scattering. By the TLM method, we find that the ohm contact of the devices on the same substrate is different, indicating that the same substrate is made on the same substrate. The ohm contact is not exactly the same. The mass difference of ohm contact interferes with the study of the additional polarization charge caused by the reverse piezoelectric effect at the AlGaN barrier layer under the applied bias voltage. In order to reduce the influence of the mass difference in ohmic contact, we designed the electronic devices that share the ohmic contact with the source. The influence of different ohm contact mass differences is eliminated by sharing the same source ohm contact with the left and right two grids on the same platform, which can accurately study the effect of gate area and gate bias on RS. In the area below ohm contact, the diffusion of metal atoms weakens the piezoelectric polarization of the AlGaN barrier layer. The additional polarized charge under the contact of the ohm is a negative value independent of the grid source bias. In the case of VGS0, the PCF scattering potential is determined by the variation of the grid source bias and the positive delta sigma 3 and the ohm region introduced in the lower gate region. When VGS increases, the value is positive and increasing delta sigma 3 gradually counteracts the number. The A sigma 1 is negative and constant, and the final A sigma 3 becomes the leading factor in the PCF scattering potential. For the two AlGaN/GaN HEMTs devices that share the same source ohm contact in the same sample, the VGS in the same range is kept in the same range by the gate probe method to ensure that the delta 3 in the sub gate area of the devices is equal. The gap between the gate source is the same, and the larger grid is for the larger grid. The total amount of additional polarized charge under the area of the device is greater, which increases the intensity of the PCF scattering potential and leads to the increase of the RS. The gate area is the same, the total amount of the additional polarized charge under the gate is the same. However, the additional scattering potential area of the device with larger gate spacing increases and the intensity of the scattering is reduced, so the amplitude of RS decreases with the VGS. Finally, the amplitude of the scattering is reduced. Using the PCF scattering theory model, we calculated the parasitic resistance RS under the different bias voltage of each size device, and compared with the test values of the parasitic resistance of the device. The better fitting results confirmed the rationality of the interpretation of the RS formation mechanism by the PCF scattering theory, and clearly indicated that the RS in the linear region of the AlGaN/GaN HEMTs device is biased with the gate source and the gate area density. The influence of.2. polarizing Coulomb scattering on the parasitic resistance of the long gate long device saturation region PCF scattering is an important scattering mechanism affecting the performance of AlGaN/GaN HEMTs devices. However, for long gate long devices, the study of the parasitic channel resistance in the saturated zone of different static bias States does not take into account the effect of PCF scattering. Thus, PCF dispersion is considered. It is important to shoot and obtain the parasitic resistance of the saturation region of the AlGaN/GaN HEMTs device. Unlike the deep sub micron gate long devices, the electric field between the source and leakage of the long gate long devices can not make the channel carrier reach the saturation drift velocity. Therefore, the linear potential distribution under the short gate grid is not suitable for long gate long devices. The distribution of channel potential in the long device needs further study. First, the VGS=-3V-0V, VDS=8V static bias point is selected in the I-V output characteristic curve, and the RS and RD. of the device are measured by the improved gate probe method. The charge control model under the wide band gap semiconductor under the Schottky gate and the saturation zone (VDS= 8V) is under the grid. The distribution of the channel potential is divided into two parts. The approximate channel region I and the clip channel region II correspond to the grid potential from VC (0) to Vknee and the region.VC (0) and VC (L) from Vknee to VC (L) respectively as the source, and the channel potential at the edge of the gate is missed, and Vknee approximately considers that the channel is exactly clipped trench potential. Then, so that The PCF scattering theory is used to analyze and determine the distribution of the additional polarization charge and the additional scattering potential of the additional polarized charge in the channel of the AlGaN/GaN HEMTs device. Finally, a variety of scattering mechanisms, such as polarization optical phonon scattering, interfacial roughness scattering, piezoelectric scattering and polarization Coulomb scattering, are considered. The theoretical calculation results of RS and RD. are in good agreement with the tested RS and RD, which proves the accuracy of the theoretical calculation. For the device in the sample 3, the additional polarized charge in the area below the ohm contact delta 1 is a negative value independent of the gate bias voltage. The VGS in each bias state is negative, so the polarizing electricity in the lower grid region is attached. The negative value of delta sigma 3 is negative. The negative value delta sigma 1 and delta 3 jointly determine the PCF additional scattering potential. The variation range of the gate source bias of each test point is -3V to 0V, the decreasing delta sigma 3 and the fixed delta sigma 1 weaken the intensity of the PCF scattering potential, resulting in the decrease of RS and RD. In addition, for several other scattering mechanisms, the non grid channel region The internal electron temperature Te and the two-dimensional electron gas density n2D determine their scattering intensity. Because the small current in the sample 3 is not enough to lead to the apparent thermal phonon effect and the self heat effect of the carrier. Under the normal temperature condition, the n2D between the gate and the gate leakage channel is fixed under the bias voltage of different gate sources. Therefore, the different static biasing. The difference between RS and RD can only be attributed to the difference of PCF scattering potential. These results confirm that due to PCF scattering, the parasitic resistance RS and RD of AlGaN/GaN HEMTs devices are related to the gate source and source leakage bias, and the method to determine the parasitic resistance RS and RD is a correct and feasible method to determine the saturation zone resistance of AlGaN/GaN HEMTs devices.

【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN386

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 姚真瑜;呂雪芹;張保平;;GaN基光柵外腔半導(dǎo)體激光器研究進(jìn)展[J];微納電子技術(shù);2013年10期

2 陳勇波;周建軍;徐躍杭;國(guó)云川;徐銳敏;;GaN高電子遷移率晶體管高頻噪聲特性的研究[J];微波學(xué)報(bào);2011年06期

3 張保平;蔡麗娥;張江勇;李水清;尚景智;王篤祥;林峰;林科闖;余金中;王啟明;;GaN基垂直腔面發(fā)射激光器的研制[J];廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期

4 汪連山,劉祥林,岳國(guó)珍,王曉暉,汪度,陸大成,王占國(guó);N型GaN的持續(xù)光電導(dǎo)[J];半導(dǎo)體學(xué)報(bào);1999年05期

5 趙麗偉;滕曉云;郝秋艷;朱軍山;張帷;劉彩池;;金屬有機(jī)化學(xué)氣相沉積生長(zhǎng)的GaN膜中V缺陷研究[J];液晶與顯示;2006年01期

6 張進(jìn)城;董作典;秦雪雪;鄭鵬天;劉林杰;郝躍;;GaN基異質(zhì)結(jié)緩沖層漏電分析[J];物理學(xué)報(bào);2009年03期

7 陳裕權(quán);;歐洲通力合作發(fā)展GaN技術(shù)[J];半導(dǎo)體信息;2009年04期

8 張金風(fēng);郝躍;;GaN高電子遷移率晶體管的研究進(jìn)展[J];電力電子技術(shù);2008年12期

9 唐懿明;;電注入連續(xù)波藍(lán)光GaN基垂直腔面發(fā)射激光器[J];光機(jī)電信息;2008年08期

10 Tim McDonald;;基于GaN的功率技術(shù)引發(fā)電子轉(zhuǎn)換革命[J];中國(guó)集成電路;2010年06期

相關(guān)會(huì)議論文 前10條

1 陳勇波;周建軍;徐躍杭;國(guó)云川;徐銳敏;;GaN高電子遷移率晶體管高頻噪聲特性的研究[A];2011年全國(guó)微波毫米波會(huì)議論文集(下冊(cè))[C];2011年

2 金豫浙;曾祥華;胡益佩;;γ輻照對(duì)GaN基白光和藍(lán)光LED的光學(xué)和電學(xué)特性影響[A];二00九全國(guó)核反應(yīng)會(huì)暨生物物理與核物理交叉前沿研討會(huì)論文摘要集[C];2009年

3 魏萌;王曉亮;潘旭;李建平;劉宏新;肖紅領(lǐng);王翠梅;李晉閩;王占國(guó);;高溫AlGaN緩沖層的厚度對(duì)Si(111)基GaN外延層的影響[A];第十一屆全國(guó)MOCVD學(xué)術(shù)會(huì)議論文集[C];2010年

4 王文軍;宋有庭;袁文霞;曹永革;吳星;陳小龍;;用Li_3N和Ga生長(zhǎng)塊狀GaN單晶的生長(zhǎng)機(jī)制[A];第七屆北京青年科技論文評(píng)選獲獎(jiǎng)?wù)撐募痆C];2003年

5 劉福浩;許金通;王玲;王榮陽(yáng);李向陽(yáng);;GaN基雪崩光電二極管及其研究進(jìn)展[A];第十屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2012年

6 王曦;孫佳胤;武愛(ài)民;陳靜;王曦;;新型硅基GaN外延材料的熱應(yīng)力模擬[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(10)[C];2007年

7 高飛;熊貴光;;GaN基量子限制結(jié)構(gòu)共振三階極化[A];第五屆全國(guó)光學(xué)前沿問(wèn)題研討會(huì)論文摘要集[C];2001年

8 凌勇;周赫田;朱星;黃貴松;黨小忠;張國(guó)義;;利用近場(chǎng)光譜研究GaN藍(lán)光二極管的雜質(zhì)發(fā)光[A];第五屆全國(guó)STM學(xué)術(shù)會(huì)議論文集[C];1998年

9 王連紅;梁建;馬淑芳;萬(wàn)正國(guó);許并社;;GaN納米棒的合成與表征[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(6)[C];2007年

10 陳寵芳;劉彩池;解新建;郝秋艷;;HVPE生長(zhǎng)GaN的計(jì)算機(jī)模擬[A];第十六屆全國(guó)半導(dǎo)體物理學(xué)術(shù)會(huì)議論文摘要集[C];2007年

相關(guān)重要報(bào)紙文章 前2條

1 銀河證券 曹遠(yuǎn)剛;春蘭股份 開(kāi)發(fā)GaN 又一方大[N];中國(guó)證券報(bào);2004年

2 ;松下電器采用SiC基板開(kāi)發(fā)出新型GaN系高頻晶體管[N];中國(guó)有色金屬報(bào);2003年

相關(guān)博士學(xué)位論文 前10條

1 趙景濤;GaN基電子器件勢(shì)壘層應(yīng)變與極化研究[D];山東大學(xué);2015年

2 毛清華;高光效硅襯底GaN基大功率綠光LED研制[D];南昌大學(xué);2015年

3 陳浩然;太赫茲波段GaN基共振隧穿器件的研究[D];西安電子科技大學(xué);2015年

4 田媛;HVPE生長(zhǎng)自支撐GaN單晶及其性質(zhì)研究[D];山東大學(xué);2016年

5 賈秀玲;用于飲用水中有害陰離子檢測(cè)的GaN基HEMT傳感器的研究[D];南京大學(xué);2016年

6 張恒;GaN基Ⅲ族氮化物外延生長(zhǎng)及相關(guān)器件的研究[D];山東大學(xué);2017年

7 龔欣;GaN異質(zhì)結(jié)雙極晶體管及相關(guān)基礎(chǔ)研究[D];西安電子科技大學(xué);2007年

8 徐波;GaN納米管的理論研究及GaN緊束縛勢(shì)模型的發(fā)展[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年

9 李亮;GaN基太赫茲器件的新結(jié)構(gòu)及材料生長(zhǎng)研究[D];西安電子科技大學(xué);2014年

10 王虎;藍(lán)寶石襯底上AlN薄膜和GaN、InGaN量子點(diǎn)的MOCVD生長(zhǎng)研究[D];華中科技大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 徐新兵;基于GaN納米線鐵電場(chǎng)效應(yīng)晶體管及相關(guān)電性能[D];華南理工大學(xué);2015年

2 周金君;溫度對(duì)GaN(0001)表面生長(zhǎng)吸附小分子SrO、BaO和Ti0_2影響的理論研究[D];四川師范大學(xué);2015年

3 艾明貴;星載GaN微波固態(tài)功率放大器的研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2015年

4 王玉堂;Virtual Source模型模擬分析GaN基電子器件特性研究[D];山東大學(xué);2015年

5 井曉玉;壘結(jié)構(gòu)對(duì)硅襯底GaN基綠光LED性能的影響[D];南昌大學(xué);2015年

6 徐政偉;硅襯底GaN基LED光電性能及可靠性研究[D];南昌大學(xué);2015年

7 肖新川;GaN微波寬帶功率放大器的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年

8 郭潔;Ce摻雜GaN納米結(jié)構(gòu)的制備及物性研究[D];新疆大學(xué);2015年

9 尹成功;毫米波GaN基HEMT小信號(hào)建模和參數(shù)提取[D];電子科技大學(xué);2014年

10 馮嘉鵬;GaN基HEMT器件的性能研究與設(shè)計(jì)優(yōu)化[D];河北工業(yè)大學(xué);2015年

,

本文編號(hào):1848057

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1848057.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9ca64***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com