基于MADN:DPAVBi摻雜體系的藍光與白光有機發(fā)光二極管的研究
本文選題:有機電致發(fā)光 + 摻雜; 參考:《蘭州大學(xué)》2015年碩士論文
【摘要】:有機發(fā)光二極管(Organic light-emitting diodes, OLED)因其具有高效節(jié)能、寬視角、快速響應(yīng)、抗震性好等特點,引起研究領(lǐng)域及商界的廣泛關(guān)注。白光OLED器件既可以與較為成熟的微電子刻蝕彩色濾色膜技術(shù)相結(jié)合以獲得其它類型的OLED器件,同時在顯示和照明領(lǐng)域也具有廣泛的應(yīng)用前景。而藍光OLED是實現(xiàn)白光的三基色之一,它對實現(xiàn)全彩顯示非常重要。雖然OLED經(jīng)過近二十年的發(fā)展,但是目前離商業(yè)實用化和大尺寸屏幕還有差距,存在著一些亟待解決的問題,如藍光材料不成熟、藍光器件發(fā)光亮度和效率低、白光器件隨發(fā)光時間和偏置電壓發(fā)生色度改變、壽命短等。針對以上問題本論文主要圍繞提高藍光OLED亮度和效率、改善白光OLED器件色穩(wěn)定性、提高器件壽命以及增強器件載流子注入效率等做了以下幾方面的研究:制造了結(jié)構(gòu)為:ITO(160nm)/m-MTDATA (20 nm)/NPB (30 nm)/MADN: DPAVBi(x wt.%)(15 nm)/BCP(15 nm)/Alq3 (30 nm)/Al(100 nm)的四組藍光OLED器件。其中DPAVBi的摻雜濃度分別為0、4、6、8wt.%。對四組器件進行對比分析,發(fā)現(xiàn)DPAVBi的摻雜濃度不僅能影響器件中的電流密度,還顯著影響著器件的發(fā)光特性。當(dāng)摻雜濃度為6wt.%時我們得到亮度為57000 cd/m2,發(fā)光效率為47 cd/A的藍光OLED器件;研究了發(fā)光層厚度對器件的影響。改變藍光發(fā)光層的厚度,制造了厚度分別為15、20、25、30 nm的四組藍光OLED器件,發(fā)現(xiàn)隨著發(fā)光層厚度的增加,器件在波長為495 nm的電致波峰強度也隨之增加,經(jīng)分析我們認為這是微腔結(jié)構(gòu)對器件產(chǎn)生了影響;改變藍光發(fā)光層的順序,并同時制造了結(jié)構(gòu)為ITO(160 nm)/m-MTDATA(20 nm)/NPB(30 nm)/MADN:DPAVBi(6 wt.%)(15 nm)/MADN:TBPe(5 wt.%)(15 mn)/BCP(15 nm)/Alq3(30 nm)/Al(100 nm)的雙藍光發(fā)光層的藍光OLED對比器件,發(fā)現(xiàn)器件在工作狀態(tài)下,載流子主要在靠近陰極的發(fā)光層中復(fù)合。我們分析,這是由于空穴的注入效率遠高于電子的注入效率所致;另外,我們將P型材料F4-TCNQ摻雜到NPB中形成摻雜的空穴傳輸層,制造了結(jié)構(gòu)為ITO(160 nm)/m-MTDATA(20 nm)/NPB:F4-TCNQ (1 wt.%)(20 nm)/MADN:DPAVBi(6 wt.%) (15 nm)/BCP(15 nm)/Alq3(30 nm)/Al(100nm)的藍光OLED器件,發(fā)現(xiàn)對NPB進行適當(dāng)?shù)腜型摻雜后,可有效地提高器件的發(fā)光效率。另外,我們還將Rubrene摻雜到MADN作為發(fā)光層制造了單層發(fā)光層的白光OLED器件,由器件的電致發(fā)光光譜發(fā)現(xiàn)主體材料與摻雜劑Rubrene之間發(fā)生了Forster能量轉(zhuǎn)移;將DPAVBi與Rubrene同時摻雜到MADN中作為發(fā)光層,制造了雙摻雜單層發(fā)光層的白光OLED器件,由器件電致發(fā)光光譜發(fā)現(xiàn)黃光成分遠大于藍光成分。我們分析這是因為電荷優(yōu)先激發(fā)Rubrene發(fā)光所致;另外,制造了結(jié)構(gòu)為ITO(160 nm)/m-MTDATA(20 nm)/NPB(30 nm)/MADN:Rubrene(5 wt.%)(5 nm)/MADN:DPAVBi(6 wt.%)(15 nm)/BCP(15 nm)/Alq3(30 nm)/Al(100 nm)的雙發(fā)光層藍光器件并改變發(fā)光層的順序制造了兩個對比器件,測試結(jié)果表明當(dāng)發(fā)光層順序為MADN:Rubrene/MADN:DPAVBi (由陽極到陰極方向)的白光器件比發(fā)光層為MADN:DPAVBi/MADN:Rubrene的器件穩(wěn)定性好,壽命長。這是因為Rubrene對空穴的陷阱作用很好地平衡及調(diào)控了器件中載流子的復(fù)合區(qū)域;改變黃光發(fā)光層的厚度我們成功制備了白光OLED器件,其色坐標(biāo)CIE為(0.3201,0.3459)。在電極與有機層之間插入緩沖層是一種提高OLED器件發(fā)光效率的方法。本論文還初步探索了將金屬氧化物半導(dǎo)體NiOx應(yīng)用到有機發(fā)光二極管中對器件的影響。改變NiOx層的厚度制備出四組對比綠光OLED器件。分析得出:插入適當(dāng)厚度的NiOx緩沖層后器件中空穴的注入效率明顯提高,器件的發(fā)光效率大大提高。柔性顯示是OLED的一個重要特點,也是OLED器件未來的發(fā)展趨勢。我們在PET柔性襯底上也成功制造了藍光OLED,研究了空穴阻擋層BCP對該器件的影響,發(fā)現(xiàn)空穴阻擋層能夠有效地增加空穴在發(fā)光層中的輸運時間,增大空穴與電子在發(fā)光層中的復(fù)合幾率。最后,論文對器件做了失效分析,討論了OLED的衰退機制,并且研究了有機層表面平整度對器件壽命的影響,發(fā)現(xiàn)有機層表面粗糙的器件會因為表面的凸點在器件工作電壓增加時產(chǎn)生大量的焦耳熱,導(dǎo)致器件性能的嚴重衰退,甚至損毀,減少器件的壽命。論文的主要創(chuàng)新點有:(1)以MADN:DPAVBi為摻雜型藍光發(fā)光層,制備了高亮度、高效率的藍光OLED器件,并研究發(fā)光層厚度對藍光器件性能的影響;(2)制備了雙藍光發(fā)光層的藍光器件,改變藍光發(fā)光層順序研究其對藍光OLED器件載流子復(fù)合和發(fā)光效率的影響;(3)制備了雙發(fā)光層的白光OLED器件并研究發(fā)光層順序和厚度對白光器件色穩(wěn)定性和壽命的影響;(4)設(shè)計并以電化學(xué)方法制備了NiOx為陽極緩沖層的綠光OLED及對比器件,研究了NiOx緩沖層對器件載流子注入效率的影響。該工作尚未見文獻報道。
[Abstract]:Organic light-emitting diodes (OLED), which has the characteristics of high efficiency, energy saving, wide angle of view, fast response and good earthquake resistance, has attracted wide attention in the field of research and business. The white light OLED device can be combined with the more mature microelectronic etching color filter film technology to obtain other types of OLED devices. It is also widely used in the field of display and lighting, and blue light OLED is one of the three basic colors to realize the white light. It is very important to realize full color display. Although OLED has been developed for nearly twenty years, there is still a gap between commercial utility and large size screen, and there are some problems to be solved urgently, such as blue light material is not successful. The luminance and efficiency of the blue light devices are low, the white light devices change with the chromaticity of the luminescence time and bias voltage, and the lifetime is short. In this paper, the following aspects are mainly focused on improving the brightness and efficiency of the blue light OLED, improving the color stability of the white light OLED device, improving the life of the device and enhancing the efficiency of the carrier injection. ITO (160nm) /m-MTDATA (20 nm) /NPB (30 nm) /MADN: DPAVBi (x wt.%) (x wt.%) (x wt.%) (15 nm) /BCP (15) /BCP (100) four groups of blue light devices. The current density also significantly affects the luminescence characteristics of the devices. When the doping concentration is 6wt.%, we get a blue light OLED device with a luminance of 57000 cd/m2 and a luminescent efficiency of 47 cd/A. The influence of the thickness of the luminescent layer on the device is studied. The thickness of the blue light layer is changed, and the four groups of blue light OLED devices with a thickness of 15,20,25,30 nm, respectively, are made. It is found that with the increase of the thickness of the luminescent layer, the electric wave peak intensity of the device at the wavelength of 495 nm also increases. By analysis, we think this is the effect of the microcavity structure on the device; the order of the blue light emitting layer is changed, and the structure is ITO (160 nm) /m-MTDATA (20 nm) /NPB (30 nm) /MADN:DPAVBi (6 wt.%) (15 nm) /MADN:TBPe (5) (5). Wt.%) a blue light contrast device of (15 Mn) /BCP (15 nm) /Alq3 (30 nm) /Al (100 nm) with a blue light layer of blue light. It is found that the carrier is mainly in the light layer near the cathode in the working state. We analyze the injection efficiency of the hole far higher than the injection efficiency of the electron; furthermore, we doped the P material F4-TCNQ. The doped hole transmission layer is formed in NPB, and a blue light device with a structure of ITO (160 nm) /m-MTDATA (20 nm) /NPB:F4-TCNQ (1 wt.%) (20 nm) /MADN:DPAVBi (6 wt.%) (15 nm) /BCP (30) /BCP (30) is found. Brene is doped to MADN as a luminescent layer to produce a white light OLED device with a single layer of light emitting layer. The electroluminescent spectrum of the device shows a Forster energy transfer between the main material and the dopant Rubrene, and DPAVBi and Rubrene are doped into MADN as a luminescent layer, and a white light OLED device with a double doped single layer luminescent layer has been produced. The electroluminescence spectra show that the yellow light is far greater than the blue light component. We analyze this due to the charge first excitation of Rubrene luminescence, and the two luminescent layer blue light of ITO (160 nm) /m-MTDATA (20 nm) /NPB (30 nm) /MADN:Rubrene (5 wt.%) (5 nm) /MADN:DPAVBi (6 wt.%) (30 15) Two contrast devices are produced in order to change the sequence of the light emitting layer. The test results show that the devices with MADN:Rubrene/MADN:DPAVBi (from the anode to the cathode) are more stable and longer than the light emitting layer (MADN:DPAVBi/MADN:Rubrene). This is due to the good balance of the hole traps for the Rubrene. The complex region of the carrier in the device is regulated, and the white light OLED device is successfully prepared by changing the thickness of the yellow light emitting layer. The color coordinates CIE is (0.3201,0.3459). The insertion of the buffer layer between the electrode and the organic layer is a method to improve the luminous efficiency of the OLED devices. This paper also preliminarily explored the NiOx of the metal oxide semiconductor. Four groups of contrast green OLED devices are prepared by changing the thickness of the NiOx layer with the thickness of the organic light-emitting diodes. The analysis shows that the injection efficiency of the holes in the device is obviously improved after inserting the appropriate thickness of the NiOx buffer layer, and the efficiency of the device is greatly improved. The flexible display is an important feature of the OLED and the OLED device is not. The development trend. We also successfully manufactured the blue light OLED on the PET flexible substrate, and studied the effect of the hole barrier layer BCP on the device. It is found that the hole barrier layer can effectively increase the transport time of the hole in the luminescent layer and increase the compound probability of the hole and the electron in the luminescent layer. Finally, the paper makes a failure analysis to the device. The decline mechanism of OLED is discussed, and the effect of the surface roughness on the life of the device is studied. It is found that the rough surface of the organic layer will produce a lot of Joule heat on the surface of the device because of the increase of the working voltage of the device, which leads to the serious deterioration of the device performance and even damage and reduce the life of the device. The main innovation of this paper is the main innovation of the paper. There are: (1) the blue light OLED devices with high brightness and high efficiency are prepared with MADN:DPAVBi as the doped blue light emitting layer, and the influence of the thickness of the luminescent layer on the performance of blue light devices is studied. (2) the blue light devices of the double blue light layer are prepared, and the influence of the blue light emitting layer on the carrier recombination and the luminous efficiency of the blue light OLED device is studied. (3) the effect of the order and thickness of the luminescent layer on the color stability and life of the white light devices was studied. (4) the green light OLED and the contrast device of the NiOx as the anode buffer layer were designed and prepared by electrochemical method. The effect of the NiOx buffer layer on the carrier injection efficiency was studied. The work has not been seen yet. Give a report.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN383.1
【相似文獻】
相關(guān)期刊論文 前10條
1 張正法;唐振方;葉長江;;發(fā)光層厚度對有機電致發(fā)光器件性能的影響[J];科學(xué)技術(shù)與工程;2006年01期
2 李紅燕;張玉祥;張宏科;王水俊;;采用雙發(fā)光層制作白色有機電致發(fā)光器件的工藝研究[J];液晶與顯示;2007年01期
3 王立忠;孟昭暉;叢林;韓強;王廣德;胡乃香;;發(fā)光層厚度比對有機電致發(fā)光器件性能的影響[J];山東交通學(xué)院學(xué)報;2008年04期
4 李建豐;孫碩;歐谷平;張福甲;;單發(fā)光層結(jié)構(gòu)的白色有機電致發(fā)光器件的研究[J];功能材料;2008年03期
5 路林;廖英杰;劉記忠;魏斌;張建華;;高效率和色穩(wěn)定性的雙超薄發(fā)光層的黃光有機電致發(fā)光器件[J];光譜學(xué)與光譜分析;2010年08期
6 丁桂英;王立忠;韓強;常喜;黃濤;姜文龍;;一種新的多發(fā)光層白色有機電致發(fā)光器件[J];光電子.激光;2011年01期
7 劉衛(wèi)民;;在玻璃平面低壓汞蒸汽放電燈中形成發(fā)光層的方法[J];發(fā)光快報;1988年Z1期
8 王洪梅;王雙;肖心明;王宇;孫東殊;楊姍姍;姜文龍;汪津;;高效率雙發(fā)光層結(jié)構(gòu)白色熒光有機電致發(fā)光器件[J];半導(dǎo)體光電;2013年06期
9 張曉波;曹進;委福祥;蔣雪茵;張志林;朱文清;許少鴻;;發(fā)光層厚度變化的高效紅色有機電致磷光器件[J];物理學(xué)報;2006年01期
10 程寶妹;鄧振波;徐登輝;肖靜;;周期性多發(fā)光層結(jié)構(gòu)單色有機電致發(fā)光器件的研究[J];光電子.激光;2007年08期
相關(guān)會議論文 前5條
1 賈勇;鄧振波;陳征;;發(fā)光層中薄層的插入對有機電致發(fā)光器件性能的影響[A];第11屆全國發(fā)光學(xué)學(xué)術(shù)會議論文摘要集[C];2007年
2 葉俊;鄭才俊;張曉宏;;高效熒光/磷光雜化白光OLED材料與器件[A];中國化學(xué)會第28屆學(xué)術(shù)年會第11分會場摘要集[C];2012年
3 王月飛;;LED用于照明的散熱、配光及光色的分析[A];海峽兩岸第十五屆照明科技與營銷研討會專題報告暨論文集[C];2008年
4 朱德喜;葉輝;高軍;劉旭;;聚合物電致發(fā)光器件中絕緣層對陰極的影響及計算模型[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
5 朱德喜;葉輝;高軍;劉旭;;聚合物電致發(fā)光器件中陰極絕緣層的影響及計算模型[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年
相關(guān)重要報紙文章 前4條
1 賈婧;新型高效“冷光源”填補國內(nèi)節(jié)能空白[N];科技日報;2007年
2 許偉邋王堅;OLED:顯示性能優(yōu)異 研發(fā)尚待深入[N];中國電子報;2007年
3 羅清岳;無機EL發(fā)展及技術(shù)狀況(上)[N];電子資訊時報;2006年
4 王迅;長春應(yīng)化所制備出高效穩(wěn)定的全熒光型白光OLED[N];中國有色金屬報;2009年
相關(guān)博士學(xué)位論文 前10條
1 于建寧;基于熒光與磷光復(fù)合的白光有機電致發(fā)光器件研究[D];上海大學(xué);2013年
2 苗艷勤;高色穩(wěn)定性熒光/磷光白光有機電致發(fā)光器件的結(jié)構(gòu)設(shè)計及性能研究[D];太原理工大學(xué);2015年
3 吳清洋;互補色白光有機電致發(fā)光器件及其色穩(wěn)定性研究[D];吉林大學(xué);2013年
4 趙波;量于阱結(jié)構(gòu)和熱活化延遲熒光WOLED的研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所);2015年
5 宋丹丹;磷光OLEDs的效率和效率roll-off特性的影響因素及改進方法[D];北京交通大學(xué);2011年
6 張穎芳;藍色和白色有機電致發(fā)光器件的研究[D];吉林大學(xué);2006年
7 丁邦東;稠環(huán)芳烴材料在有機電致發(fā)光器件中的應(yīng)用研究[D];上海大學(xué);2009年
8 林華平;有機電致發(fā)光器件及發(fā)光機理的研究[D];上海大學(xué);2012年
9 劉術(shù)梅;非摻雜類量子阱結(jié)構(gòu)有機電致發(fā)光器件性能及機理研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所);2011年
10 汪津;高效率色穩(wěn)定的白色有機電致發(fā)光器件[D];吉林大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 謝莉莎;高效有機發(fā)光二極管的研究[D];北京化工大學(xué);2015年
2 蘇彥新;白光有機電致發(fā)光器件的性能研究[D];電子科技大學(xué);2015年
3 向東旭;基于MADN:DPAVBi摻雜體系的藍光與白光有機發(fā)光二極管的研究[D];蘭州大學(xué);2015年
4 陳蘇杰;載流子傳輸特性對基于銥化合物磷光有機電致發(fā)光器件的影響[D];電子科技大學(xué);2011年
5 楊倩;基于Ir(ppy)_3的有機電致磷光器件結(jié)構(gòu)優(yōu)化設(shè)計及其性能研究[D];太原理工大學(xué);2012年
6 牛霞;基于新型藍光材料的白色有機電致發(fā)光器件的研究[D];天津理工大學(xué);2006年
7 魯建華;基于雙極傳輸層和磷光敏化層的白色有機電致發(fā)光器件[D];吉林大學(xué);2009年
8 雷霞;磷光白光有機電致發(fā)光器件載流子平衡及性能優(yōu)化的研究[D];電子科技大學(xué);2012年
9 薛欽;基于銪配合物的紅色和挜配合物的黃色有機電致發(fā)光器件的研究[D];吉林大學(xué);2008年
10 陳久樂;基于銜接層藍光OLED器件性能研究[D];電子科技大學(xué);2013年
,本文編號:1842640
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1842640.html