硅烯的氫化及電子性質(zhì)研究
本文選題:硅烯 + 掃描隧道顯微鏡; 參考:《云南大學(xué)》2015年碩士論文
【摘要】:自從1947年晶體管發(fā)明以來,以硅,鍺等為基礎(chǔ)的半導(dǎo)體工業(yè)得到了快速發(fā)展,極大的改善了人類的生活。這其中又以集成電路的發(fā)展最為迅猛,人們?yōu)榱双@得性能更高能耗更低的芯片,不斷的縮減器件的尺寸,增加其集成度。相應(yīng)的就需要一方面不斷改善器件結(jié)構(gòu)來降低材料的維度,另一方面,尋找新型材料。目前,以石墨烯,二硫化鉬,硅烯等為代表的新型二維材料以及拓?fù)浣^緣體引起了人們廣泛的關(guān)注。這些材料因其新奇的量子效應(yīng),例如石墨烯其準(zhǔn)粒子滿足相對(duì)論協(xié)變的狄拉克方程,電子有效質(zhì)量為零,這樣在信息傳輸時(shí)基本不耗能,具有很大的應(yīng)用前景。硅烯作為近年來剛剛興起的一種類石墨烯材料,具有十分豐富的物理性質(zhì)同時(shí)又與現(xiàn)代半導(dǎo)體工業(yè)相兼容,使其受到了學(xué)術(shù)界和工業(yè)界的關(guān)注。 本論文中,我們主要通過分子束外延的方法在Ag(111)表面生長(zhǎng)硅烯,然后在室溫下,通過加熱裂解鎢絲來裂解氫氣,使氫原子吸附在硅烯表面。隨后使用掃描隧道顯微鏡對(duì)硅烯吸氫以后的結(jié)構(gòu)及性質(zhì)進(jìn)行了詳細(xì)的研究。本論文的主要內(nèi)容如下: 1.利用分子束外延的方法在Ag(111)上生長(zhǎng)硅烯,然后在室溫下對(duì)不同的硅烯相,包括4x4,(?)×(?),(?)×(?)等進(jìn)行吸氫。 2.利用掃描隧道顯微鏡觀察不同相在氫化后結(jié)構(gòu)的變化情況。結(jié)合第一性原理計(jì)算,給出了各個(gè)相的吸附構(gòu)型。硅烯-4x4吸氫后從STM圖像中可以看出它的結(jié)構(gòu)依舊為有序的結(jié)構(gòu)。吸氫后一個(gè)硅烯-4x4的單胞內(nèi)包含有7個(gè)H原子,分屬于兩個(gè)不對(duì)稱的半單胞之中,其中一個(gè)包含1個(gè)H原子,另一個(gè)包含6個(gè)H原子。對(duì)上述結(jié)構(gòu)退火,大約在450K的時(shí)候,H完全從表面脫附掉。硅烯-(?)×(?)氫化后表面會(huì)出現(xiàn)有序的1×1結(jié)構(gòu),同時(shí)氫化后的結(jié)構(gòu)說明了硅烯-(?)×(?)是一種硅烯相而非Si-Ag合金。 3.硅烯-(?)×(?)相根據(jù)吸氫量以及襯底溫度的不同,出現(xiàn)了許多不同的結(jié)構(gòu)。值得注意的是飽和吸氫的情況下,其表面會(huì)出現(xiàn)一些完整的1×1結(jié)構(gòu)以及大量的條狀結(jié)構(gòu)。
[Abstract]:Since the invention of transistors in 1947, semiconductor industries based on silicon and germanium have developed rapidly and greatly improved human life. In order to obtain the chip with higher performance and lower energy consumption, the size of the device is reduced and the integration level is increased in order to obtain the chip with higher performance and lower energy consumption, which is the most rapid development of the integrated circuit. On the one hand, we need to improve the device structure to reduce the dimension of materials, on the other hand, to find new materials. At present, new two-dimensional materials, such as graphene, molybdenum disulfide, silicene, and topological insulators, have attracted much attention. Because of their novel quantum effects, such as graphene quasiparticle satisfying the Dirac equation of relativistic covariation, the effective mass of electrons is zero, so it has a great application prospect in the transmission of information. As a new kind of graphene material, silicene has rich physical properties and is compatible with modern semiconductor industry, which has attracted the attention of academia and industry. In this thesis, we have grown silicene on the surface of AgN 111 by molecular beam epitaxy (MBE). Then at room temperature, hydrogen atoms are adsorbed on the surface of silicene by heating pyrolytic tungsten wire to decompose hydrogen. The structure and properties of silicene after hydrogen absorption were studied by scanning tunneling microscope (SEM). The main contents of this thesis are as follows: 1. Silene was grown by molecular beam epitaxy (MBE) on AgC111), and then at room temperature for different silicene phases, including 4x4x4) 脳 Agnitrium). And so on to absorb hydrogen. 2. The structure changes of different phases after hydrogenation were observed by scanning tunneling microscope (SEM). According to the first principle calculation, the adsorption configuration of each phase is given. The structure of silicene-4 x 4 is still ordered by STM image. After hydrogen absorption, there are 7 H atoms in the monocytes of silylerene -4x4, belonging to two asymmetrical semi-monocytes, one containing one H atom and the other containing six H atoms. For the above structure annealing, H is completely desorbed from the surface at about 450 K. Silylidene) After hydrogenation, an ordered 1 脳 1 structure appears on the surface. It is a silicene phase rather than a Si-Ag alloy. 3. Silylidene) According to the amount of hydrogen absorption and substrate temperature, there are many different structures in the phase. It is worth noting that in the case of saturated hydrogen absorption, some complete 1 脳 1 structures and a large number of stripe structures appear on the surface.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN304.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭帥;吳孝松;;介觀樣品低溫?zé)犭娦?yīng)的測(cè)量方法[J];低溫物理學(xué)報(bào);2013年05期
2 趙瀟璇;劉艷茹;董斌;柴永明;柳云騏;劉晨光;;納米二硫化鉬的化學(xué)法合成研究進(jìn)展[J];材料導(dǎo)報(bào);2013年23期
3 劉洋洋;陳曉冬;王現(xiàn)英;鄭學(xué)軍;楊俊和;;類石墨烯過渡金屬二硫化物的研究進(jìn)展[J];材料導(dǎo)報(bào);2014年03期
4 王偉;岳工舒;楊曉;張露;張婷;;Quantum simulation study of double gate hetero gate dielectric and LDD doping graphene nanoribbon p i n tunneling FETs[J];Journal of Semiconductors;2014年06期
5 王強(qiáng);馬錫英;;硅烯的研究進(jìn)展[J];微納電子技術(shù);2014年10期
6 樊志敏;鄭玉嬰;曹寧寧;張延兵;;氧化石墨烯納米帶/TPU復(fù)合材料薄膜制備及性能表征[J];功能材料;2015年03期
7 余林峰;陳晉;丁冬海;楊春利;楊曉鳳;;類石墨烯材料在能量?jī)?chǔ)存轉(zhuǎn)換領(lǐng)域的應(yīng)用[J];硅酸鹽通報(bào);2015年01期
8 信紅強(qiáng);侯新剛;韓修訓(xùn);;低維MoS_2混合納米片的發(fā)光特性[J];發(fā)光學(xué)報(bào);2015年04期
9 何珂;薛其坤;;拓?fù)淞孔硬牧吓c量子反常霍爾效應(yīng)[J];材料研究學(xué)報(bào);2015年03期
10 JIN ChangQing;WANG XianCheng;LIU QingQing;ZHANG SiJia;FENG ShaoMin;DENG Zheng;YU RiCheng;ZHU JingLong;;New quantum matters:Build up versus high pressure tuning[J];Science China(Physics,Mechanics & Astronomy);2013年12期
相關(guān)博士學(xué)位論文 前10條
1 楊紅;拓?fù)浣^緣體中的自旋劈裂[D];湘潭大學(xué);2013年
2 劉文亮;拓?fù)浣^緣體表面態(tài)調(diào)控的第一性原理研究[D];湘潭大學(xué);2013年
3 李慧;磁性拓?fù)浣^緣體單晶的生長(zhǎng)以及磁學(xué)性質(zhì)的研究[D];上海交通大學(xué);2013年
4 羅永康;鈰基磷族化合物中磁性和近藤效應(yīng)的研究[D];浙江大學(xué);2013年
5 王鴻;單晶石墨烯的化學(xué)氣相沉積法制備、氫氣刻蝕與同質(zhì)外延研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
6 張鵬;半導(dǎo)體、石墨烯、拓?fù)浣^緣體以及多鐵氧化物中二維電子系統(tǒng)的自旋動(dòng)力學(xué)的理論研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
7 何程;光子晶體中非互易性質(zhì)研究[D];南京大學(xué);2011年
8 陳牧;拓?fù)浣^緣體薄膜表面態(tài)和摻雜效應(yīng)的STM研究[D];清華大學(xué);2012年
9 劉e,
本文編號(hào):1836260
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1836260.html