超快等離激元動力學(xué)及其控制
本文選題:超快表面等離激元 + 局域近場增強(qiáng)。 參考:《長春理工大學(xué)》2017年博士論文
【摘要】:超快表面等離激元由于具有亞波長局域、局域近場增強(qiáng)等獨(dú)特的性質(zhì),使人們能夠在飛秒時間、納米空間尺度上操縱和控制光子,為實現(xiàn)全光集成,發(fā)展更小、更快和更高效的新型納米光子學(xué)器件提供了一條有效的途徑。它在光計算、光存儲、光催化、納米集成光子學(xué)、光學(xué)傳感、生物標(biāo)記、醫(yī)學(xué)成像、太陽能電池以及表面增強(qiáng)拉曼光譜等領(lǐng)域有著重要的應(yīng)用,因而受到物理學(xué)、材料科學(xué)、納米科技等領(lǐng)域研究人員的極大關(guān)注;诔毂砻娴入x激元的獨(dú)特性質(zhì),本文利用干涉時間分辨光輻射電子顯微(Interferometric time-resolved photoemission electron microscopy,ITR-PEEM)技術(shù),重點(diǎn)對超快激光輻照金屬納米結(jié)構(gòu)產(chǎn)生的超快等離激元局域近場進(jìn)行成像研究,實現(xiàn)了極小時空尺度等離激元的動力學(xué)時間演化過程的成像及其控制。本論文的主要工作和成果如下:首先,利用ITR-PEEM技術(shù)對p偏振7 fs脈沖寬度激光作用蝶形納米結(jié)構(gòu)以及納米線形成的超快等離激元場(熱點(diǎn))的動力學(xué)過程進(jìn)行了成像。結(jié)果表明,當(dāng)兩束脈沖的相對時間延時小于13 fs,受激光干涉場的主導(dǎo),蝶形納米結(jié)構(gòu)中右納米三角左尖端以及左納米三角的下外角兩位置的等離激元以相同的頻率振蕩。其后,兩位置處等離激元的振蕩頻率發(fā)生變化,逐漸移向其自身的本征頻率。對于不同偏振方向的飛秒光激發(fā)蝶形納米結(jié)構(gòu)形成的熱點(diǎn),其各自的等離激元振蕩頻率、動力學(xué)時間演化過程均不相同。入射激光的偏振方向與p偏振之間的最小夾角越大,所激發(fā)的等離激元振蕩頻率越快。由于被激發(fā)等離激元的相位傳播,納米線不同位置處形成等離激元的動力學(xué)時間演化曲線從第二個光學(xué)周期開始出現(xiàn)相位差。此外,對不同尺寸納米線相對應(yīng)位置的等離激元動力學(xué)過程進(jìn)行了研究。實驗結(jié)果表明,時間演化曲線中存在的相位差歸因于等離激元的相位傳播以及等離激元振蕩頻率不同。其次,對p偏振7 fs光脈沖激發(fā)不同尺寸的石門納米結(jié)構(gòu)產(chǎn)生的熱點(diǎn)分布進(jìn)行了成像研究,以及對不同位置產(chǎn)生等離激元的動力學(xué)過程進(jìn)行了研究。實驗結(jié)果表明,使用p偏振7 fs光脈沖激發(fā)石門納米結(jié)構(gòu),觀察到熱點(diǎn)主要集中在二聚體的左端。同時,二聚體上棒的右端以及單豎棒的上端觀察到了因樣品缺陷引起的熱點(diǎn)。在二聚體長度相等的較大尺寸石門結(jié)構(gòu)中(二聚體中棒的長度均為220nm,單體豎棒的長度為500 nm),發(fā)現(xiàn)二聚體左端兩位置對應(yīng)的等離激元模式具有相同的共振頻率,且兩位置的等離激元振蕩具有相同相位。在該樣品形成的等離激元的動力學(xué)演化研究中,觀察到了因多模式等離激元的相干疊加而產(chǎn)生的拍頻現(xiàn)象,其在時間演化曲線中呈現(xiàn)為緊挨主峰側(cè)翼的出現(xiàn)。在二聚體長度相等的較小尺寸石門結(jié)構(gòu)中(二聚體中棒的長度均為220 nm,單體豎棒的長度為300 nm),除了具有二聚體長度相等的較大尺寸石門結(jié)構(gòu)的所有特征外,我們還觀察到了相鄰較近的兩個隨機(jī)缺陷對應(yīng)的等離激元的動力學(xué)相互影響行為,發(fā)現(xiàn)兩者以同位相振蕩,其歸因于相鄰較近的等離激元出現(xiàn)強(qiáng)耦合所致。此外,當(dāng)兩束7fs光脈沖間的延時從11.35 fs變化為12.68 fs時,較高的光電子產(chǎn)額可以被控制從二聚體上棒的左端變化到右端;如果兩脈沖的延時進(jìn)一步增加,較高光電子產(chǎn)額又回到棒左端的位置。這說明通過改變兩束光脈沖間的延時,可對石門結(jié)構(gòu)中形成的納米等離激元場的空間分布進(jìn)行阿秒時間精度的相干控制。在二聚體長度不相等的石門結(jié)構(gòu)中(二聚體中棒的長度分別為220 nm與120 nm),觀察到了其左端兩位置對應(yīng)等離激元模式的共振頻率有差異,等離激元的振蕩隨時間演化出現(xiàn)完全失相。接下來,開展了波長為400 nm的超快光脈沖激發(fā)銀方塊形結(jié)構(gòu)產(chǎn)生等離激元場的控制研究。結(jié)果表明,不同偏振方向的線偏振激光照射下,銀方塊形結(jié)構(gòu)熱點(diǎn)的分布位置及其強(qiáng)度發(fā)生改變。特別是發(fā)現(xiàn)當(dāng)激光的偏振方向變化90°時,熱點(diǎn)從銀方塊形結(jié)構(gòu)的上側(cè)棱邊區(qū)域調(diào)控到下側(cè)棱邊區(qū)域。通過改變?nèi)肷渚偏激光的偏振方向,對銀方塊形微米結(jié)構(gòu)中超快等離激元實現(xiàn)了主動控制。最后,開展了通過改變中心波長為800 nm的單光束飛秒脈沖偏振方向和改變兩束飛秒光脈沖延時的方法對等離激元場分布進(jìn)行控制的研究。當(dāng)單束入射飛秒激光的偏振方向從30°旋轉(zhuǎn)到120°時,蝶形納米結(jié)構(gòu)的熱點(diǎn)從左納米三角形的下外角變化到其上外角,實現(xiàn)了蝶形納米結(jié)構(gòu)熱點(diǎn)分布的控制。當(dāng)兩束正交飛秒激光脈沖間的延時變化步長為0.67 fs時,熱點(diǎn)在蝶形的三角形中的位置分布已發(fā)生明顯的變化。特別是,兩脈沖的相對延時從-0.67 fs變化為0.67 fs,蝶形納米結(jié)構(gòu)的熱點(diǎn)從左納米三角的下外角完全移動到了其上外角位置。采用FDTD方法對以上工作進(jìn)行模擬研究,結(jié)果表明模擬結(jié)果與實驗觀察到的現(xiàn)象完全吻合。當(dāng)兩束非正交飛秒激光脈沖(一束為p偏振,另一束相對p偏振逆時針旋轉(zhuǎn)60°)的相對延時從0.67 fs變化為1.33 fs時,蝶形納米結(jié)構(gòu)的熱點(diǎn)從左納米三角的上外角變化到了其下腰位置。這說明通過改變兩束飛秒光脈沖延時的方法,實現(xiàn)了超快等離激元在納米空間尺度、阿秒時間精度的相干控制。本論文的研究工作為全面揭示出極小時空尺度等離激元的獨(dú)特性質(zhì),深入掌握其表征以及控制技術(shù),實現(xiàn)對極小時空尺度等離激元在阿秒時間精度、納米空間分辨率的全貌揭示打下了堅實的基礎(chǔ),對于發(fā)展以等離激元為基礎(chǔ)的新型光電器件具有重要的意義。
[Abstract]:The ultrafast surface plasmon, due to its unique properties such as subwavelength localization and local near-field enhancement, enables people to manipulate and control photons at femtosecond time and in nanoscale scales. It provides an effective way to achieve all-optical integration and develop smaller, faster and more efficient new nanoscale devices. Storage, photocatalysis, nanoscale photonics, optical sensing, biomarkers, medical imaging, solar cells and surface enhanced Raman spectroscopy have important applications, which have attracted great attention by researchers in the fields of physics, material science, nanotechnology and other fields. Based on the unique properties of ultrafast surface plasmons, this paper uses interference. The time resolved Interferometric time-resolved photoemission electron microscopy (ITR-PEEM) technology, focusing on the imaging research on the ultrafast laser irradiated metal nanostructures produced by the ultrafast plasmon polaritons near field, has realized the imaging of the dynamic time evolution process of the tiny space-time polaritons. The main work and results of this paper are as follows: first, the ITR-PEEM technique is used to imaging the dynamic process of the p polarization 7 fs pulse width laser on the sphenoidal nanowire and the ultrafast plasmon field (hot spot) formed by the nanowires. The results show that the relative time delay of the two pulses is less than 13 FS and is subjected to the laser interference field. The same frequency oscillates in the two position of the right nano triangle and the lower outer corner of the left nano triangle in the butterfly nanoscale structure. Then, the oscillation frequency of the plasmon at the two position changes and gradually moves to its intrinsic frequency. The dynamic time evolution process of their respective plasmon oscillations is different. The greater the minimum angle between the polarization direction of the incident laser and the p polarization, the faster the oscillation frequency of the excited element excites. The dynamic time of the nanowires is formed at different positions due to the phase propagation of the excitations. The phase difference of the evolution curve begins from second optical cycles. In addition, the kinetic process of the equivalent ionization of the nanowires with different sizes is studied. The experimental results show that the phase difference in the time evolution curve is attributed to the phase propagation of the equal ionization excitations and the difference in the oscillation frequency of the plasmon. Secondly, the polarization of the P is 7. The FS optical pulse stimulated the distribution of hot spots in different sizes of Shimen nanostructures, and studied the kinetic process of the plasmon polaritons produced in different locations. The experimental results showed that the p polarization 7 FS light pulses were used to stimulate the Shimen nanostructure, and the heat point was mainly concentrated on the left end of the two polymer. At the same time, two polymerization was found. The hot spots caused by sample defects are observed on the right end of the rod and the upper end of the single vertical rod. In the large size Shimen structure with equal length of two polymer (the length of the rod in the two polymer is 220nm, the length of the single rod is 500 nm), it is found that the equivalent resonance frequency of the equi excitation mode corresponding to the two position of the two polymer left end has the same resonance frequency, and two In the study of the kinetic evolution of the plasmons formed by the sample, the frequency of the beat frequency caused by the coherent superposition of the multimode plasmon is observed, and it appears in the time evolution curve as the appearance of the main peak side of the main peak. The smaller size of the Shimen structure with equal length of the two polymer is the same. In the two polymer, the length of the rod is 220 nm and the length of the single rod is 300 nm. In addition to all the characteristics of the large size Shimen structure with equal length of two polymer, we also observe the dynamic interaction of the equitor plasmons corresponding to the adjacent two random defects, and find that the two are in the same phase oscillation, and their attribution is attributed. In addition, when the time delay between two beam 7FS pulses varies from 11.35 fs to 12.68 FS, the higher photoelectron output can be controlled from the left end of the two polymer rod to the right end; if the delay of the two pulse increases further, the higher photoelectron yield is back to the left end of the rod. By changing the delay between two beams of light pulses, the spatial distribution of the nanoscale plasmon field formed in the Shimen structure can be coherently controlled by the time precision. In the Shimen structure with two polymer lengths (the length of the rod in the two polymer is 220 nm and 120 nm respectively), the corresponding plasmon modes at the left end in the two position are observed. The resonance frequencies are different, and the oscillations of the plasmon are completely deformed with the time evolution. Next, the control study of the excited element field of the silver square block excited by the ultra fast light pulse with a wavelength of 400 nm is carried out. The results show that the distribution position of the hot spot of the silver square block structure under the linear polarization laser irradiation with different polarization directions and the distribution of the hot spot of the silver square block structure is shown. Its intensity changes. Especially, when the polarization direction of the laser is changed to 90 degrees, the hot spot is regulated from the upper edge edge region of the silver square block to the lower edge edge region. By changing the polarization direction of the laser polarized laser, the active control is realized for the ultra fast plasmon in the silver square microstructure. Finally, the change is carried out. The polarization direction of the single beam femtosecond pulse with a wavelength of 800 nm and the method of changing the delay of two femtosecond light pulses are controlled. When the polarization direction of the single beam incident femtosecond laser rotates from 30 to 120 degrees, the hot spots of the butterfly nanoscale change from the lower outer corner of the left nanoscale triangle to the upper outer corner. The distribution of hot spots in the butterfly shaped nanostructures is now controlled. When the delay variation step between two beams of two beam quadrature femtosecond laser pulses is 0.67 FS, the position distribution of the hot spots in the butterfly shaped triangle has changed obviously. In particular, the relative delay of the two pulses varies from -0.67 fs to 0.67 FS, and the hot spots of the butterfly shaped nanostructures are from the left nanometer triangle. The lower and outer corners are completely moved to its upper and outer corners. The FDTD method is used to simulate the above work. The results show that the simulation results are in perfect agreement with the observed phenomena. The relative delay of the two beams of two beam non orthogonal femtosecond laser pulses (one beam for p polarization and 60 degrees against the p polarization counter clockwise rotation) varies from 0.67 fs to 1.33 FS The focus of the sphenoidal nanostructure changes from the upper and outer corners of the left nanoscale triangle to its lower waist. This shows that the time-delay of the two beams of femtosecond light pulses is changed to realize the coherent control of the time precision of the ultrafast plasmons at the nanoscale scale and the time precision of the attosecond. The unique character of the element and the deep grasp of its characterization and control technology have laid a solid foundation for the full appearance of the nanosecond time precision and nanoscale resolution, which is of great importance to the development of the new optoelectronic devices based on the plasmons.
【學(xué)位授予單位】:長春理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TN15;O441
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;納米等離激元光子學(xué)研究獲進(jìn)展[J];光機(jī)電信息;2010年03期
2 李智;龔旗煌;;金屬納米顆粒等離激元耦合的研究及其對理解近場光學(xué)探測的意義[J];科學(xué)通報;2009年15期
3 任燕如,尹道樂;金屬中聲學(xué)等離激元的產(chǎn)生條件[J];物理學(xué)報;1981年04期
4 李曉卿;;天體物理中等離激元[J];南京大學(xué)學(xué)報(自然科學(xué)版);1983年03期
5 王曉,蔡建華;三維緊束縛電子氣的等離激元理論[J];物理學(xué)報;1991年07期
6 黃姍;方哲宇;林峰;朱星;;銀膜表面周期性條紋導(dǎo)致的溝槽等離激元增強(qiáng)效應(yīng)[J];電子顯微學(xué)報;2009年02期
7 劉勇;劉三秋;;橫等離激元與對等離子體的非線性相互作用[J];核聚變與等離子體物理;2011年01期
8 魏赫穎,邢岐榮,張偉力,柴路,戴建明,王清月;飛秒激光在生物醫(yī)學(xué)中的應(yīng)用[J];光電子·激光;2000年06期
9 ;我國高效率太瓦級飛秒激光裝置建成[J];光機(jī)電信息;2000年11期
10 王雷劍;張海峰;張驥;徐永生;;飛秒激光系統(tǒng)的運(yùn)行和改進(jìn)[J];中國原子能科學(xué)研究院年報;2005年00期
相關(guān)會議論文 前10條
1 肖宜明;張丫丫;張超;徐文;;中空金屬納米球等離激元以及表面等離激元模式研究[A];中國真空學(xué)會2012學(xué)術(shù)年會論文摘要集[C];2012年
2 劉海;孫秀冬;;金屬納米線對中磁等離激元與電介質(zhì)多層膜表面波耦合作用的研究[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
3 張超;張瑞;江嵩;張力;高洪營;張曉磊;陳留國;廖源;徐文;董振超;;石墨表面卟啉分子的電致發(fā)光特性研究[A];中國真空學(xué)會2012學(xué)術(shù)年會論文摘要集[C];2012年
4 魏志義;王兆華;田金榮;令維軍;賈玉磊;張軍;韓海年;王鵬;孫敬華;鄭加安;張杰;聶玉昕;;飛秒激光功能擴(kuò)展及精確控制[A];第六屆全國光學(xué)前沿問題研討會論文摘要集[C];2003年
5 曾紹群;;飛秒激光的聲光掃描與神經(jīng)活動觀測[A];2006年全國強(qiáng)場激光物理會議論文集[C];2006年
6 徐楠;吳成印;吳志峰;梁青青;楊宏;龔旗煌;;分子的飛秒激光取向操縱[A];2006年全國強(qiáng)場激光物理會議論文集[C];2006年
7 蔣紅兵;鐘鳳嬌;龔旗煌;;分子取向?qū)︼w秒激光傳輸?shù)挠绊慬A];第八屆全國光學(xué)前沿問題討論會論文集[C];2009年
8 魯欣;張U,
本文編號:1831816
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1831816.html