高階球面單形—徑向容積求積分卡爾曼濾波算法
發(fā)布時(shí)間:2018-05-01 07:14
本文選題:容積卡爾曼濾波 + 高斯—拉蓋爾求積分; 參考:《通信學(xué)報(bào)》2017年08期
【摘要】:為了進(jìn)一步提高非線性卡爾曼濾波算法的估計(jì)精度,提出一種高階球面單形—徑向容積求積分卡爾曼濾波(HDSSRCQKF,high-degree spherical simplex-radial cubature quadrature Kalman filter)算法。將非線性函數(shù)的高斯加權(quán)積分分解為球面積分和徑向積分,采用基于正則單形變換群的七階球面單形準(zhǔn)則計(jì)算球面積分,使用高階高斯—拉蓋爾求積分準(zhǔn)則計(jì)算徑向積分,推導(dǎo)出高階球面單形—徑向容積求積分準(zhǔn)則。從該準(zhǔn)則中提取出容積點(diǎn)及其相應(yīng)權(quán)值的一般計(jì)算方法,并利用該計(jì)算方法給出非線性卡爾曼濾波框架下高階球面單形—徑向容積求積分卡爾曼濾波的具體計(jì)算步驟。數(shù)值仿真實(shí)驗(yàn)結(jié)果表明,所提算法具有比高階容積卡爾曼濾波更高的估計(jì)精度,在信道估計(jì)與均衡、語音增強(qiáng)和混沌通信等領(lǐng)域具有一定的應(yīng)用價(jià)值。
[Abstract]:In order to further improve the estimation accuracy of nonlinear Kalman filtering algorithm, a high-order spherical simplex and radial volume integral Kalman filtering algorithm named HDSSRCQKFhigh-degree spherical simplex-radial cubature quadrature Kalman filter) is proposed. The Gao Si weighted integral of nonlinear function is decomposed into spherical integral and radial integral. The seventh order spherical simplex criterion based on regular simplex transformation group is used to calculate the spherical integral, and the higher-order Gauss-Lagerre integral criterion is used to calculate the radial integral. The integration criterion of higher order spherical simplex and radial volume is derived. The general calculation method of volume point and its corresponding weight value is extracted from the criterion, and the concrete calculation steps of integral Kalman filtering of high-order spherical simplex and radial volume under the framework of nonlinear Kalman filter are given. The numerical simulation results show that the proposed algorithm has higher estimation accuracy than high-order volumetric Kalman filter, and has certain application value in the fields of channel estimation and equalization, speech enhancement and chaotic communication.
【作者單位】: 裝備學(xué)院研究生院;裝備學(xué)院光電裝備系;
【基金】:國家高技術(shù)研究發(fā)展計(jì)劃(“863”計(jì)劃)基金資助項(xiàng)目(No.2015AA7026085)~~
【分類號(hào)】:TN713
,
本文編號(hào):1828285
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1828285.html
最近更新
教材專著