基于鉭酸鋰晶片的熱釋電探測(cè)器敏感元研制
本文選題:熱釋電探測(cè)器 + 鉭酸鋰 ; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:基于鉭酸鋰的熱釋電探測(cè)器由于其具有能在常溫下工作、光譜響應(yīng)范圍寬,熱釋電系數(shù)大、價(jià)格便宜和器件制備簡單等特點(diǎn),廣泛用于非接觸式溫度測(cè)量設(shè)備、運(yùn)動(dòng)檢測(cè)器和氣體分析儀中。而鉭酸鋰敏感元是其核心,它的優(yōu)劣直接決定著器件的性能。本論文主要對(duì)鉭酸鋰敏感元的制備進(jìn)行了較為系統(tǒng)的研究,研究的具體內(nèi)容包括熱釋電探測(cè)器理論分析、鉭酸鋰晶體拋磨工藝、紅外吸收層的制備與表征以及熱釋電探測(cè)器性能的測(cè)試。首先,分析了熱釋電探測(cè)器的原理和基本性能參數(shù),接著采用了機(jī)械研磨法和化學(xué)機(jī)械拋光法分別對(duì)鉭酸鋰晶片進(jìn)行了減薄與拋光,分別研究了研磨液濃度、主軸轉(zhuǎn)速、壓力對(duì)減薄速率的影響和溫度、氧化劑濃度、溶液的pH值對(duì)化學(xué)機(jī)械拋光速率的影響,并優(yōu)化了減薄拋光工藝參數(shù),對(duì)晶片表面形貌作了表征。然后,采用了高壓靜電噴涂法制備油墨-炭黑紅外吸收層,并進(jìn)行了吸收層的表征和吸收率的測(cè)試。研究了電壓和噴涂高度對(duì)吸收層質(zhì)量的影響,當(dāng)電壓16kV,噴涂距離為3cm時(shí),噴涂量為5μl時(shí)吸收層表面較為均勻平整,厚度為2μm左右,粗糙度為500nm。通過紅外吸收率的測(cè)試,發(fā)現(xiàn)油墨-炭黑吸收層對(duì)近紅外光的吸收率非常高,達(dá)到了90%以上。最后,對(duì)熱釋電探測(cè)器進(jìn)行了封裝與性能測(cè)試,測(cè)量了不同粗糙度的鉭酸鋰晶片的介電常數(shù)和和介電損耗,對(duì)不同鉭酸鋰厚度、不同入射功率、不同表面粗糙度、不同調(diào)制頻率下的電壓響應(yīng)進(jìn)行了測(cè)試,并通過熱學(xué)仿真分析響應(yīng)電壓波形,同時(shí)測(cè)試比較了不同表面粗糙度敏感元、不同頻率下的噪聲。隨著鉭酸鋰晶片厚度的減小響應(yīng)率逐漸增大,當(dāng)厚度達(dá)到50μm時(shí),器件響應(yīng)率達(dá)到了4.62×103V/W。器件的響應(yīng)隨著入射光的功率成正比,在低頻時(shí)探測(cè)器的電壓響應(yīng)隨著頻率的升高而增大,在一定頻率范圍內(nèi)探測(cè)器的電壓響應(yīng)與頻率無關(guān),在高頻時(shí),器件的電壓響應(yīng)隨著頻率升高逐漸減小。敏感元表面經(jīng)過拋光后的器件噪聲明顯減小,粗糙度為Ra 50nm的敏感元器件噪聲低到2μV/Hz,通過計(jì)算可得探測(cè)器的等效噪聲光功率為4.3×10-10W/Hz1/2,比探測(cè)率為3.3×108cm·Hz1/2/W,符合高性能熱釋電探測(cè)器對(duì)敏感元的要求。
[Abstract]:The pyroelectric detector based on lithium tantalate is widely used in non-contact temperature measurement equipment, motion detector and gas analyzer because of its ability to work at normal temperature, wide spectrum response range, high pyroelectric coefficient, cheap price and simple device preparation, and the lithium tantalate sensitive element is the core of the thermoluminescence detector. In this paper, the preparation of the lithium tantalate sensitive element is systematically studied in this paper, including the theoretical analysis of pyroelectric detector, the polishing process of lithium tantalate crystal, the preparation and characterization of the infrared absorption layer and the test of the performance of the pyroelectric detector. First, the principle of pyroelectric detector is analyzed. The basic performance parameters, then the thinning and polishing of lithium tantalate wafers were carried out by mechanical grinding and chemical mechanical polishing. The influence of grinding fluid concentration, spindle speed, pressure on thinning rate and temperature, concentration of oxidant, pH value of solution on the mechanical polishing rate of chemical mechanical polishing were studied respectively, and the thinning polishing was optimized. The surface morphology of the wafer was characterized by the process parameters. Then, the ink carbon black infrared absorption layer was prepared by high voltage electrostatic spraying, and the absorption layer was characterized and the absorption rate was tested. The influence of the voltage and spraying height on the absorption layer quality was studied. When the voltage 16kV, spraying distance was 3cm, the coating surface was 5 U L. It is more uniform and smooth, the thickness is about 2 mu m, and the roughness is 500nm. through the infrared absorption test. It is found that the absorption rate of the ink carbon black absorption layer is very high and up to 90%. Finally, the package and performance test of the pyroelectric detector are carried out, and the dielectric constant and the dielectric constant of the lithium tantalate wafer with different roughness are measured and the dielectric constant is measured. The electric loss is tested on the voltage response of different lithium tantalate thickness, different incident power, different surface roughness and different modulation frequency, and the response voltage waveform is analyzed by thermal simulation. At the same time, the noise of different surface roughness sensitive element and different frequency is tested and compared. With the thickness of lithium tantalate wafer decreasing, the response rate is reduced. When the thickness reaches 50 m, the response rate of the device reaches 4.62 x 103V/W., and the response of the device is proportional to the power of the incident light. The voltage response of the detector increases with the increase of frequency at low frequency. The voltage response of the detector is not related to the frequency in a certain frequency range. At high frequency, the voltage response of the device is along with the frequency. The increase gradually decreases. The noise of the device on the surface of the sensitive element decreases obviously. The noise of the sensitive component with the roughness of Ra 50nm is low to 2 V/Hz, and the equivalent noise power of the detector is 4.3 x 10-10W/Hz1/2 by calculation, and the specific detection rate is 3.3 x 108CM. Hz1/2/W, which is in line with the requirements of the high performance pyroelectric detector to the sensitive element.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN215
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顧聚興;;熱釋電探測(cè)器[J];紅外;2009年10期
2 馬述侃;熱釋電探測(cè)器的應(yīng)用[J];紅外研究;1983年03期
3 柳圭如;;混合熱釋電探測(cè)器[J];紅外技術(shù);1983年04期
4 N. E. Byer;S. E. Stokowski;楊雄超;;高性能熱釋電探測(cè)器[J];紅外技術(shù);1983年05期
5 林猷慎,張毓榮,蔣青;小型熱釋電探測(cè)器[J];紅外研究(A輯);1986年05期
6 王景武;;熱釋電探測(cè)器的應(yīng)用[J];激光與紅外;1987年10期
7 譚顯裕;;熱釋電探測(cè)器及其應(yīng)用簡介[J];紅外技術(shù);1988年04期
8 張毓榮,林猷慎,王世月;熱釋電探測(cè)器在自動(dòng)噴香水裝置中的應(yīng)用[J];紅外技術(shù);1989年04期
9 劉衛(wèi)國,張良瑩,姚熹;多層熱釋電探測(cè)器的動(dòng)態(tài)熱釋電響應(yīng)[J];電子學(xué)報(bào);1995年06期
10 高月華,張亦工,黃民雙,安學(xué)磊;熱釋電探測(cè)器快速響應(yīng)的電路實(shí)現(xiàn)[J];壓電與聲光;2003年04期
相關(guān)會(huì)議論文 前5條
1 馬學(xué)亮;邵秀梅;于月華;李言謹(jǐn);;基于弛豫鐵電單晶的紅外熱釋電探測(cè)器研究[A];中國光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
2 邵秀梅;馬學(xué)亮;于月華;方家熊;;基于電學(xué)定標(biāo)熱釋電探測(cè)器的紅外輻射測(cè)量方法[A];第十三屆全國紅外加熱暨紅外醫(yī)學(xué)發(fā)展研討會(huì)論文及論文摘要集[C];2011年
3 郭慶龍;馮龍齡;;熱釋電探測(cè)器測(cè)量重復(fù)率脈沖能量的曲線分析[A];2004全國光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、2005全國光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、廣西光學(xué)學(xué)會(huì)成立20周年年會(huì)論文集[C];2005年
4 楊鈞;王融;湯大新;董璽娟;王卉;李鐵津;;超薄Langmuir—Blodgett膜熱釋電探測(cè)器研究[A];首屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
5 李兵;藍(lán)國祥;王華馥;;鉭酸鋰鋅晶體的喇曼光譜[A];第一屆全國光散射會(huì)議會(huì)議指南[C];1981年
相關(guān)博士學(xué)位論文 前1條
1 孫德輝;周期極化基質(zhì)材料鉭酸鋰/鈮酸鋰類晶體生長與性質(zhì)研究[D];山東大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 程金寶;基于鉭酸鋰晶片的熱釋電探測(cè)器敏感元研制[D];電子科技大學(xué);2017年
2 馬振東;熱釋電探測(cè)器單元結(jié)構(gòu)仿真研究[D];電子科技大學(xué);2017年
3 李毅;鉭酸鋰熱釋電紅外探測(cè)器特性研究[D];電子科技大學(xué);2014年
4 王軍鋒;線列結(jié)構(gòu)熱釋電探測(cè)器工藝及性能研究[D];電子科技大學(xué);2016年
5 呂小平;熱釋電探測(cè)器綜合理論模型分析[D];長春理工大學(xué);2007年
6 盧偉;汽車內(nèi)飾面板激光弱化系統(tǒng)及其剩余厚度控制研究[D];華中科技大學(xué);2011年
7 杜鵬;PZT晶片敏感元分析及性能實(shí)驗(yàn)[D];中北大學(xué);2008年
8 潘棟;磁控濺射鉭酸鋰薄膜工藝與熱釋電性能研究[D];電子科技大學(xué);2017年
9 孫金超;鎂摻雜鉭酸鋰的生長和結(jié)構(gòu)及性能的研究[D];哈爾濱理工大學(xué);2009年
10 權(quán)茂華;聚合物前驅(qū)體法制備鉭酸鋰薄膜的研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號(hào):1794835
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1794835.html