超寬帶諧振腔設(shè)計(jì)技術(shù)研究及應(yīng)用
發(fā)布時(shí)間:2018-04-05 18:30
本文選題:同軸腔 切入點(diǎn):圓柱腔 出處:《電子科技大學(xué)》2015年碩士論文
【摘要】:諧振腔是一種具有儲(chǔ)能和選頻作用的微波無(wú)源器件,廣泛應(yīng)用于濾波器、振蕩器、頻率計(jì)等元器件設(shè)計(jì)以及微波測(cè)量等領(lǐng)域中。然而常用的諧振腔一般采用單一的工作模式,覆蓋頻帶較窄,這樣在寬頻帶測(cè)試時(shí)必須使用多個(gè)腔體,測(cè)試工序較為繁瑣且成本較高,因此,用一個(gè)腔體覆蓋整個(gè)頻帶實(shí)現(xiàn)超寬帶測(cè)試具有十分重要的意義。基于此研究目的,本文在分析了常用傳輸線型諧振器的優(yōu)缺點(diǎn)上,分頻段來(lái)設(shè)計(jì)1~40GHz諧振腔腔體,其中1~7GHz采用同軸腔結(jié)構(gòu),7~40GHz采用TE0np模圓柱腔結(jié)構(gòu),最后創(chuàng)新性地將二者整合為一套腔體結(jié)構(gòu),實(shí)現(xiàn)用一個(gè)腔體覆蓋1~40GHz超寬帶。本文的重點(diǎn)是7~40GHz圓柱腔體的設(shè)計(jì)。根據(jù)TE0np模諧振頻率公式,給出主腔長(zhǎng)度尺寸范圍;繼而利用模式凈化原理及后腔處理技術(shù)建立模型,并利用HFSS軟件對(duì)縫隙階梯活塞尺寸進(jìn)行優(yōu)化,最后分析耦合方式及耦合位置,完成諧振腔的一體化設(shè)計(jì)。本次論文設(shè)計(jì)時(shí)重點(diǎn)考慮了如下幾個(gè)問(wèn)題:1.干擾模式的抑制:針對(duì)工作模式附近數(shù)量繁多的干擾模式,本文采用3步進(jìn)行抑制,首先利用模式凈化原理對(duì)圓柱腔長(zhǎng)度進(jìn)行優(yōu)化,其次利用后腔處理技術(shù)加入縫隙階梯活塞對(duì)存在縱向電流分量的干擾模式進(jìn)行抑制,最后利用雙脊波導(dǎo)/矩形波導(dǎo)激勵(lì)對(duì)簡(jiǎn)并模式進(jìn)行抑制;2.耦合結(jié)構(gòu)設(shè)計(jì):7~40GHz圓柱腔體采用孔耦合激勵(lì),耦合端口選擇在工作模式場(chǎng)強(qiáng)最大值處開(kāi)孔,且開(kāi)孔位置需對(duì)1~7GHz同軸腔設(shè)計(jì)造成的影響亦降至最低。最終7~26.5GHz選擇在側(cè)壁處開(kāi)孔,而Ka波段在上端蓋開(kāi)孔,而1~7GHz同軸腔采用探針耦合。3.一體化腔體結(jié)構(gòu)的設(shè)計(jì):為使同軸腔體0Q值最大,計(jì)算可調(diào)節(jié)同軸內(nèi)導(dǎo)體直徑,綜合考慮同軸-圓柱二腔體的相互影響,優(yōu)化設(shè)計(jì)耦合結(jié)構(gòu),完成同軸腔的設(shè)計(jì),實(shí)現(xiàn)一體化腔體整體設(shè)計(jì)。根據(jù)同軸腔及圓柱腔復(fù)介電常數(shù)測(cè)試原理,搭建可工作于1~40GHz諧振腔測(cè)試系統(tǒng),利用微擾法對(duì)待測(cè)樣品進(jìn)行了測(cè)試,并對(duì)測(cè)試結(jié)果進(jìn)行了標(biāo)準(zhǔn)差分析。在整個(gè)頻帶內(nèi),測(cè)試標(biāo)準(zhǔn)差為??????1%,5tan?12%tan?6 10?????。結(jié)果表明,本文設(shè)計(jì)合理,滿足預(yù)期期望。
[Abstract]:Resonator is a passive microwave device with the function of energy storage and frequency selection. It is widely used in the design of filters, oscillators, cymometers and microwave measurement.However, the common resonators usually use a single mode of operation, which covers a narrow frequency band. In this way, more than one cavity must be used in the wide band test, and the testing procedure is more complicated and the cost is high.It is very important to use one cavity to cover the whole frequency band to realize UWB testing.For this purpose, in this paper, the advantages and disadvantages of the common transmission line resonators are analyzed, and the 1~40GHz resonator is designed in the frequency band, in which the 1~7GHz adopts the coaxial cavity structure of 740 GHz and the TE0np mode cylindrical cavity structure.Finally, the two are innovatively integrated into a set of cavity structure to cover 1~40GHz UWB with one cavity.This paper focuses on the design of 7~40GHz cylindrical cavity.According to the TE0np mode resonant frequency formula, the length range of the main cavity is given, and then the model is established by using the mode purification principle and the post-cavity processing technology, and the size of the gap step piston is optimized by using the HFSS software.Finally, the coupling mode and the coupling position are analyzed, and the integrated design of the resonator is completed.The design of this paper focuses on the following questions: 1.Suppression of interference modes: aiming at a large number of interference modes near working modes, this paper adopts three steps to suppress them. Firstly, the length of cylindrical cavity is optimized by using the principle of mode purification.Secondly, the interference mode with longitudinal current component is suppressed by adding gap step piston in the back cavity processing technique, and the degenerate mode is suppressed by double ridge waveguide / rectangular waveguide excitation.The coupling structure design: 7 ~ 40GHz cylindrical cavity adopts hole coupling excitation, and the coupling port is chosen to open at the maximum working mode field strength, and the influence of the opening position on the design of 1~7GHz coaxial cavity is reduced to the minimum.Finally, 7~26.5GHz was chosen to open at the side wall, while the Ka-band hole was opened in the upper end cover, while the 1~7GHz coaxial cavity was coupled with a probe. 3.The design of the integrated cavity structure: in order to maximize the 0Q value of the coaxial cavity, the diameter of the coaxial inner conductor is calculated, and the interaction between the coaxial cavity and the cylindrical cavity is considered synthetically, the coupling structure is optimized and the design of the coaxial cavity is completed.The whole design of integrated cavity is realized.According to the principle of measuring the complex dielectric constant of coaxial cavity and cylindrical cavity, a measuring system for 1~40GHz resonator is set up. The samples are tested by perturbation method, and the standard deviation of the test results is analyzed.In the whole frequency band, the standard deviation of the test is 5 tan1, 1 2 and 6 10.The results show that the design is reasonable and meets the expected expectations.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN629.1
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前1條
1 唐宗熙,張其劭;微波集成電路基片復(fù)介電常數(shù)快速寬頻帶測(cè)試技術(shù)[J];電子學(xué)報(bào);1991年05期
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 朱大紅;毫米波寬頻帶低損耗介質(zhì)復(fù)介電常數(shù)測(cè)試技術(shù)的研究[D];電子科技大學(xué);2005年
,本文編號(hào):1715948
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1715948.html
最近更新
教材專著