無(wú)線能量管理芯片的研究與設(shè)計(jì)
發(fā)布時(shí)間:2018-04-03 01:29
本文選題:植入式醫(yī)療芯片 切入點(diǎn):無(wú)線能量 出處:《杭州電子科技大學(xué)》2017年碩士論文
【摘要】:近幾年,隨著對(duì)植入式醫(yī)療芯片研究的不斷深入,生物信號(hào)頻段低噪聲放大器、低噪聲低功耗數(shù)模轉(zhuǎn)換器等處理模塊已經(jīng)獲得了較大的突破。除了這些研究領(lǐng)域,另一個(gè)重要的課題就是無(wú)線能量的傳輸與處理,它的目的是為了解決電池更換與有線傳輸帶來(lái)操作上的難度。通過(guò)天線采集無(wú)線電磁波能量,將其轉(zhuǎn)化為直流電源,實(shí)現(xiàn)芯片的可持續(xù)性工作。本文對(duì)無(wú)線能量管理芯片中的相關(guān)模塊進(jìn)行研究和設(shè)計(jì),實(shí)現(xiàn)集成度較高、系統(tǒng)功能較完善的無(wú)線能量管理芯片,完成無(wú)線能量的轉(zhuǎn)換與管理,從而給負(fù)載電路提供高性能的電源電壓。論文所設(shè)計(jì)的無(wú)線能量管理芯片主要包括電荷泵整流器(Charge Pump Rectifier,REC)、帶隙基準(zhǔn)電壓源(Bandgap Voltage Reference,BGR)、低壓差線性穩(wěn)壓器(Low Dropout Regulator,LDO)。針對(duì)REC的研究與設(shè)計(jì),論文首先分析它與天線之間的等效電路,得出輸入信號(hào)擺幅與輸入帶寬之間的折衷關(guān)系;再利用電荷守恒原理對(duì)REC進(jìn)行設(shè)計(jì)流程的總結(jié),并基于本征MOS管實(shí)現(xiàn)高效率的整流器。針對(duì)BGR的研究與設(shè)計(jì),論文對(duì)基于亞閾值區(qū)MOS管與BJT相結(jié)合的改進(jìn)型結(jié)構(gòu)展開(kāi)分析,解釋了決定工藝穩(wěn)定度的關(guān)鍵因素并提出相應(yīng)的提高電源抑制能力的措施。針對(duì)LDO的研究與設(shè)計(jì),論文分別對(duì)LDO和開(kāi)關(guān)穩(wěn)壓器的工作原理進(jìn)行分析,并詳細(xì)介紹了LDO中的關(guān)斷、過(guò)壓保護(hù)、過(guò)流保護(hù)、過(guò)溫保護(hù)等輔助電路,在此基礎(chǔ)上設(shè)計(jì)環(huán)路穩(wěn)定、高電源抑制比的LDO。論文采用SMIC 0.18μm CMOS工藝對(duì)上述各模塊和整個(gè)無(wú)線能量管理芯片進(jìn)行了電路的設(shè)計(jì)仿真、版圖設(shè)計(jì)與驗(yàn)證。版圖后仿真結(jié)果表明,REC整流效率達(dá)到60%,改進(jìn)型BGR靜態(tài)電流僅為650nA,電源抑制為-60dB@DC、-50dB@500MHz,工藝穩(wěn)定度在1%。LDO的靜態(tài)電流為5μA,當(dāng)最大負(fù)載電流為15μA時(shí),效率為66.7%。在空載時(shí)電源抑制為-100dB@DC、-50dB@500MHz,在滿載時(shí)為-55dB@DC、-50dB@500MHz。另外,在溫度超過(guò)70℃、負(fù)載電流超過(guò)30μA、輸入電壓超過(guò)2.2V時(shí)均能關(guān)斷電路,實(shí)現(xiàn)電路的自我保護(hù);谝陨先齻(gè)模塊設(shè)計(jì)整個(gè)無(wú)線能量管理芯片,仿真表明,對(duì)應(yīng)于不同的輸入電壓,LDO輸入電壓均能限制在1.8V-2V的安全工作區(qū)域,并且將輸出紋波降到輸出電壓的1%以下,實(shí)現(xiàn)了低噪聲、低紋波的高性能輸出。同時(shí),芯片在溫度為70℃、負(fù)載電流超過(guò)30μA時(shí),均能關(guān)斷芯片實(shí)現(xiàn)保護(hù)。
[Abstract]:In recent years, with the development of implantable medical chip, the processing modules such as low noise amplifier and low noise digital-to-analog converter in the frequency band of biological signal have made a great breakthrough.In addition to these research areas, another important issue is wireless energy transmission and processing, which aims to solve the operational difficulties caused by battery replacement and wired transmission.The wireless electromagnetic wave energy is collected by antenna and converted into DC power source to realize the sustainable operation of the chip.This paper studies and designs the related modules in the wireless energy management chip, realizes the wireless energy management chip with high integration and perfect system function, and completes the conversion and management of wireless energy.Thus provides high performance power supply voltage to the load circuit.The wireless energy management chip designed in this paper mainly includes charge Pump Rectifier, Bandgap Voltage reference, low Dropout regulator.Aiming at the research and design of REC, the equivalent circuit between REC and antenna is analyzed firstly, and the tradeoff between input signal swing and input bandwidth is obtained, and then the design flow of REC is summarized by using the principle of charge conservation.A high efficiency rectifier is realized based on intrinsic MOS transistor.In view of the research and design of BGR, this paper analyzes the improved structure based on the combination of MOS tube and BJT in sub-threshold region, explains the key factors that determine the process stability, and puts forward the corresponding measures to improve the power supply suppression ability.Aiming at the research and design of LDO, the paper analyzes the working principle of LDO and switching regulator, and introduces in detail the auxiliary circuits in LDO, such as turn-off, overvoltage protection, over-current protection, over-temperature protection, etc. On this basis, the loop stability is designed.High power rejection ratio of LDO.In this paper, SMIC 0.18 渭 m CMOS process is used to simulate the circuit design, layout design and verification of the above modules and the whole wireless energy management chip.鐗堝浘鍚庝豢鐪熺粨鏋滆〃鏄,
本文編號(hào):1703032
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1703032.html
最近更新
教材專著