IGBT功率模塊熱傳導與退化研究
發(fā)布時間:2018-04-01 05:00
本文選題:IGBT模塊 切入點:結溫 出處:《河北工業(yè)大學》2015年碩士論文
【摘要】:功率半導體器件IGBT(絕緣柵雙極晶體管)高頻化、大功率化、集成化的發(fā)展,使得IGBT模塊承載更高的工作溫度和溫度沖擊,其各層材料的熱物性因往復膨脹收縮而疲勞退化,表現(xiàn)為給定功率及環(huán)境應力的模塊工作溫度升高,模塊對功率應力、環(huán)境應力及系統(tǒng)暫態(tài)過程的容適性變差,模塊的運行安全余量降低。當模塊的實際工作溫度超過極限安全工作溫度時,就會發(fā)生不可逆轉的失效。因此,研究IGBT模塊的傳熱特性及其退化規(guī)律,對于提高IGBT模塊乃至電力電子設備的性能及可靠性有重要意義。擬對IGBT模塊的傳熱特性及其退化趨勢進行理論、試驗及仿真研究。首先,深入分析IGBT模塊的結構和工作原理,探討功率應力作用下IGBT模塊的發(fā)熱機理和傳熱特性的退化機理;研究能反映IGBT模塊傳熱特性退化的熱敏電參數(shù)、溫度參數(shù)等物理量,選擇與功率及環(huán)境應力無關、僅反映模塊結構及材料屬性的熱阻作為傳熱特性的退化特征參數(shù);根據(jù)出廠參數(shù)確定熱阻下限,根據(jù)極限安全結溫及降額使用規(guī)范確定熱阻上限,建立模糊退化模型H(R)。其次,研發(fā)開關頻率可調(diào)、負載電流可控的單相IGBT模塊開關控制及溫度測試系統(tǒng)。該系統(tǒng)能對IGBT模塊的集電極電流、集射極電壓、工作頻率及占空比進行動態(tài)調(diào)節(jié);采用DS18B20溫度傳感器配合無線數(shù)據(jù)采集、傳輸模塊實現(xiàn)殼溫的遠程實時監(jiān)控;采用光纖測溫系統(tǒng)實現(xiàn)結溫的實時在線監(jiān)測;采用泰克高速記憶示波器實現(xiàn)集射極電壓和集電極電流開通關斷過程的觸發(fā)錄波;設計完成4個電流等級、4個頻率等級的正交試驗,對熱敏電參數(shù)和溫度試驗數(shù)據(jù)進行了分析。再次,以實測平均功率損耗作為熱源,對IGBT模塊進行三維穩(wěn)態(tài)和瞬態(tài)ANSYS仿真研究。仿真得到模塊的溫度場分布、結溫及殼溫曲線;將實測殼溫曲線與仿真曲線進行比對,驗證了試驗結果和仿真結果的一致性。最后,研究熱阻網(wǎng)絡模型及熱阻測試方法,基于實測功率損耗、結溫和殼溫對熱阻參數(shù)進行提取;根據(jù)模糊退化模型H(R)對模塊疲勞狀態(tài)進行定量評估。
[Abstract]:With the development of high frequency, high power and integration of IGBT (Insulated Gate Bipolar Transistor), the IGBT module is carrying higher working temperature and temperature shock, and the thermal properties of each layer of IGBT are degenerated by reciprocating expansion and contraction.The performance is that the working temperature of the module with given power and environmental stress increases, the tolerance of the module to the power stress, environmental stress and transient process of the system becomes poor, and the safety margin of the module operation is reduced.When the actual working temperature of the module exceeds the limit safe working temperature, irreversible failure will occur.Therefore, it is of great significance to study the heat transfer characteristics and degradation law of IGBT modules for improving the performance and reliability of IGBT modules and even power electronic equipment.The heat transfer characteristics and degradation trend of IGBT module are studied theoretically, experimentally and simulated.First of all, the structure and working principle of IGBT module are analyzed in depth, the heating mechanism and heat transfer degradation mechanism of IGBT module under power stress are discussed, the thermal sensitive electrical parameters, temperature parameters and other physical quantities which can reflect the degradation of heat transfer characteristics of IGBT module are studied.The thermal resistance, which is independent of power and environmental stress, only reflects the thermal resistance of the module structure and material properties as the degradation characteristic parameter of heat transfer characteristics, determines the lower limit of thermal resistance according to the factory parameters, and determines the upper limit of thermal resistance according to the limit safety junction temperature and the usage code of reducing amount.A fuzzy degenerative model was established.Secondly, the switch control and temperature measurement system of single phase IGBT module with adjustable switching frequency and controllable load current is developed.The system can dynamically adjust collector current, collector voltage, working frequency and duty cycle of IGBT module, and realize remote real-time monitoring of shell temperature by using DS18B20 temperature sensor and wireless data acquisition.The real-time on-line monitoring of junction temperature is realized by using optical fiber temperature measurement system, and the trigger recording process of collector voltage and collector current switching off is realized by using Taike high-speed memory oscilloscope.The orthogonal test of four current levels and four frequency levels was designed and the data of thermoelectric parameters and temperature tests were analyzed.Thirdly, using the measured average power loss as the heat source, the 3D steady-state and transient ANSYS simulation of the IGBT module is carried out.The temperature field distribution, junction temperature and shell temperature curves of the module are obtained by simulation, and the measured shell temperature curve is compared with the simulation curve to verify the consistency between the experimental results and the simulation results.Finally, the thermal resistance network model and the thermal resistance testing method are studied. Based on the measured power loss, the thermal resistance parameters are extracted from the junction temperature and the shell temperature, and the fatigue state of the module is quantitatively evaluated according to the fuzzy degradation model (HGR).
【學位授予單位】:河北工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN322.8
【參考文獻】
相關期刊論文 前1條
1 唐勇;陳明;汪波;;電力電子器件短時脈沖工作的結溫特性研究[J];電力電子技術;2010年03期
,本文編號:1694052
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1694052.html
教材專著