高速高精度宏微雙驅(qū)動運(yùn)動平臺結(jié)構(gòu)優(yōu)化設(shè)計
本文選題:宏微運(yùn)動平臺 切入點(diǎn):有限元分析 出處:《廣東工業(yè)大學(xué)》2015年碩士論文
【摘要】:大行程高速高加速度精密定位技術(shù)是微電子制造、超精密加工、精密測量等領(lǐng)域快速發(fā)展的基礎(chǔ)。在芯片封裝行業(yè),隨著芯片引腳間距的減小及生產(chǎn)效率要求的提高,對封裝設(shè)備的定位精度、速度和加速度提出很高的要求。超精密加工行業(yè),由于有些精密零件的尺寸較大,要求加工設(shè)備在具備精密定位能力的同時還要有足夠的行程。因此,開展大行程、高速、高加速度、精密定位平臺的研究具有重大的理論和現(xiàn)實意義。課題基于宏微雙驅(qū)動技術(shù)搭建了大行程、高速、高定位精度的一維運(yùn)動平臺。通過直線電機(jī)實現(xiàn)大行程的要求,精密海德漢光柵測量宏動的位移誤差,壓電陶瓷驅(qū)動器驅(qū)動柔性鉸鏈平臺補(bǔ)償位移誤差實現(xiàn)平臺的高精度定位。宏微雙驅(qū)動一維運(yùn)動平臺機(jī)械結(jié)構(gòu)主要包括五個部分:直線電機(jī)、連接架、柔性鉸鏈平臺、光柵尺、導(dǎo)軌。宏微雙驅(qū)動平臺以高速、高加速度重復(fù)定位時,宏動平臺質(zhì)量越輕產(chǎn)生的殘余振動越小;谕?fù)鋬?yōu)化設(shè)計對連接架和柔性鉸鏈平臺進(jìn)行材料去除,達(dá)到輕量化的目標(biāo)。在保證連接架剛度、應(yīng)力、一階固有頻率情況下對連接架進(jìn)行尺寸優(yōu)化,得到最優(yōu)尺寸。運(yùn)動平臺的微動部分采用具有無間隙、無噪音、無需潤滑、高分辨率等特點(diǎn)的柔性鉸鏈機(jī)構(gòu)。通過MATLAB計算得到滿足系統(tǒng)剛度和強(qiáng)度的柔性鉸鏈尺寸參數(shù);谟邢拊浖嗀NSYS的拓?fù)湫螤顑?yōu)化和尺寸優(yōu)化確定滿足剛度、強(qiáng)度和固有頻率要求的微動平臺結(jié)構(gòu)。采用有限元熱分析方法,構(gòu)建宏微運(yùn)動平臺的熱-結(jié)構(gòu)耦合分析模型,對宏微運(yùn)動平臺的連接架及柔性鉸鏈平臺開展熱特性分析。耦合場分析結(jié)果發(fā)現(xiàn),相比無溫度場載荷條件,連接架及柔性鉸鏈平臺的變形量增大;陟`敏度分析對運(yùn)動平臺的關(guān)鍵部件連接架進(jìn)行尺寸優(yōu)化。補(bǔ)充了傳統(tǒng)的僅考慮結(jié)構(gòu)載荷影響的方法,為運(yùn)動平臺的超精密定位和穩(wěn)定運(yùn)行提供更為全面的分析。文章最后使用Analyzer AZ804一B測試儀對所設(shè)計的一維宏微雙驅(qū)動平臺整機(jī)進(jìn)行了性能驗證。主要驗證了平臺宏動部分的速度跟隨性、微動部分的速度跟隨性、平臺加速度跟隨性、微動平臺振動幅值特性等。
[Abstract]:High-speed and high-acceleration precision positioning technology is the basis of rapid development in the fields of microelectronics manufacturing, ultra-precision machining, precision measurement and so on. In the chip packaging industry, with the decrease of pin spacing and the improvement of production efficiency, The positioning accuracy, speed and acceleration of packaging equipment are very high. Because some precision parts are larger in size, it is required that the machining equipment should have enough stroke while having precision positioning ability. The research of large stroke, high speed, high acceleration and precision positioning platform is of great theoretical and practical significance. One dimensional motion platform with high positioning accuracy. The precision Hyderham grating is used to measure the displacement error of macro motion by realizing the requirement of large stroke by linear motor. Piezoelectric actuators drive flexure hinge platform to compensate displacement error to achieve high precision positioning. The mechanical structure of one dimensional motion platform with macro and micro dual drive consists of five parts: linear motor, connecting frame, flexible hinge platform, grating ruler, and so on. Guideway. The lighter the mass of the platform, the smaller the residual vibration, when the platform is positioned at high speed and high acceleration. The material is removed from the connecting frame and the flexure hinge platform based on the topology optimization design. To achieve the goal of lightweight. Under the condition of ensuring the stiffness, stress and natural frequency of the connecting frame, optimize the dimension of the connecting frame and obtain the optimum size. The fretting part of the motion platform has no clearance, no noise, no lubrication, Flexure hinge mechanism with high resolution and other characteristics. The dimension parameters of flexure hinge satisfying the stiffness and strength of the system are obtained by MATLAB calculation. The satisfying stiffness is determined by topological shape optimization and dimension optimization based on the finite element software ANSYS. The finite element thermal analysis method is used to construct the thermal-structure coupling analysis model of macro and micro motion platform. The thermal characteristics of the connecting frame and the flexible hinge platform of the macro and micro motion platform are analyzed. The results of coupling field analysis show that compared with the conditions of no temperature field load, The deformation of the connecting frame and the flexible hinge platform is increased. Based on the sensitivity analysis, the dimensions of the connecting frame of the key components of the platform are optimized, which complements the traditional method which only considers the influence of the structural load. This paper provides a more comprehensive analysis for the ultra-precision positioning and stable operation of the motion platform. Finally, the performance of the designed one-dimensional macro and micro dual drive platform is verified by using Analyzer AZ804 B tester. The platform is mainly verified. The velocity following of the macro part, The velocity following property of the fretting part, the acceleration following property of the platform, the amplitude characteristic of the vibration of the fretting platform, etc.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN405
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李小萍;盛景泰;;基于空中運(yùn)動平臺的雷達(dá)任務(wù)系統(tǒng)可靠性研究[J];電子產(chǎn)品可靠性與環(huán)境試驗;2011年03期
2 董永謙;狄希遠(yuǎn);張志耀;田芳;;高速精密運(yùn)動平臺研制[J];電子工藝技術(shù);2011年03期
3 楊國哲,王立平,郁鼎文,黃歡;三坐標(biāo)精密運(yùn)動平臺底座的設(shè)計[J];機(jī)械工程師;2005年07期
4 王貴平;董永謙;田芳;狄希遠(yuǎn);;生瓷帶打孔機(jī)運(yùn)動平臺的設(shè)計[J];電子工藝技術(shù);2009年02期
5 紀(jì)大壯;楊小雷;王國宏;李勝軍;詹毅;;基于改進(jìn)粒子濾波的運(yùn)動平臺定位算法[J];系統(tǒng)仿真學(xué)報;2010年09期
6 楊國哲;王立平;郁鼎文;崔巍;;三維微細(xì)電火花加工運(yùn)動平臺的誤差模型建立[J];機(jī)械工程師;2006年06期
7 楊一博;尹文生;朱煜;王春洪;;粗精動超精密運(yùn)動平臺系統(tǒng)建模與分析研究[J];中國機(jī)械工程;2008年23期
8 孫浩;王程;王潤生;;基于多傳感器融合的運(yùn)動平臺運(yùn)動目標(biāo)檢測[J];計算機(jī)應(yīng)用;2008年04期
9 趙岐誠;江晶;蓋旭剛;;空中多運(yùn)動平臺多傳感器目標(biāo)跟蹤[J];現(xiàn)代雷達(dá);2009年10期
10 周文寶;;超大行程機(jī)器人運(yùn)動平臺的設(shè)計[J];現(xiàn)代制造;2009年14期
相關(guān)會議論文 前8條
1 代小林;叢大成;韓俊偉;李洪人;;基于凱恩方程的并聯(lián)運(yùn)動平臺多剛體動力學(xué)建模[A];第五屆全國流體傳動與控制學(xué)術(shù)會議暨2008年中國航空學(xué)會液壓與氣動學(xué)術(shù)會議論文集[C];2008年
2 由俊生;由勇;許敘遙;馬月欣;;持續(xù)載荷飛行仿真運(yùn)動平臺的預(yù)測控制研究[A];中國航空學(xué)會控制與應(yīng)用第十二屆學(xué)術(shù)年會論文集[C];2006年
3 韓e,
本文編號:1688733
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1688733.html