縱波光學(xué)聲子耦合下半導(dǎo)體量子阱電磁誘導(dǎo)透明介質(zhì)中的光孤子行為
本文選題:電磁誘導(dǎo)透明 切入點(diǎn):半導(dǎo)體量子阱 出處:《湘潭大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:目前正處于信息化時(shí)代,對(duì)信息的傳輸和處理的要求越來越高。光孤子作為信息載體比傳統(tǒng)的信息載體有明顯的優(yōu)勢。主要表現(xiàn)為:光孤子通訊有傳輸容量大,中繼器大且誤碼率小,抗電磁干擾能力強(qiáng),保密性能好等特點(diǎn)。因而如何在信息傳輸和處理過程中利用光孤子作為信息轉(zhuǎn)播的載體,成為了目前物理與信息學(xué)科交叉研究的熱門課題。電磁誘導(dǎo)透明(EIT)技術(shù)的應(yīng)用和半導(dǎo)體工藝的不斷完善,使得光孤子在通訊器件中的實(shí)現(xiàn)成為了可能。研究表明:EIT介質(zhì)中的光孤子具有超慢群速度的特征,使得光孤子的存儲(chǔ)成為可能。更為重要的是,半導(dǎo)體量子阱除了具備EIT介質(zhì)所需的分立能級(jí)和大的電偶極矩等特點(diǎn)外,還相干演化可控和易于集成的優(yōu)勢被認(rèn)為最具潛力實(shí)現(xiàn)EIT量子器件應(yīng)用的介質(zhì)。半導(dǎo)體量子阱EIT介質(zhì)中光孤子不僅能利用光孤子在信息傳輸和處理上的優(yōu)勢,還能充分發(fā)揮半導(dǎo)體量子阱量子器件實(shí)際應(yīng)用的潛能。因此,研究半導(dǎo)體量子阱EIT介質(zhì)中的光孤子行為,能為信息傳輸和處理,量子器件實(shí)際應(yīng)用提供一定的參考價(jià)值。本文的主要研究內(nèi)容為第一章,先介紹了EIT的原理、特征和具體的現(xiàn)象;然后對(duì)半導(dǎo)體量子阱的構(gòu)造、分類、具體制備方法進(jìn)行闡述。最后,對(duì)本文的研究方法和內(nèi)容作了簡要的介紹。第二章,研究了縱波光學(xué)聲子耦合弛豫效應(yīng)對(duì)級(jí)聯(lián)型三能級(jí)半導(dǎo)體量子阱EIT介質(zhì)中光孤子行為的影響。結(jié)果表明,隨著縱波光學(xué)聲子耦合強(qiáng)度的增加,體系時(shí)間光孤子由暗孤子向亮孤子轉(zhuǎn)化,即級(jí)聯(lián)型半導(dǎo)體量子阱中暗-亮孤子的轉(zhuǎn)化可通過縱波光學(xué)聲子耦合強(qiáng)度大小來調(diào)控。此外,還發(fā)現(xiàn)光孤子的群速度也可通過縱波光學(xué)聲子耦合強(qiáng)度和控制光來調(diào)控。第三章,研究了N型四能級(jí)非對(duì)稱半導(dǎo)體量子阱EIT介質(zhì)中縱波光學(xué)聲子耦合效應(yīng)和高階效應(yīng)對(duì)孤子動(dòng)力學(xué)性質(zhì)的影響。研究表明隨著縱波光學(xué)聲子耦合強(qiáng)度的增加,孤子的幅度出現(xiàn)先減小后增加的變化規(guī)律。當(dāng)固定縱波光學(xué)聲子耦合強(qiáng)度,發(fā)現(xiàn)隨著三光子失諧量的增加,孤子的幅度和寬度都出現(xiàn)了最大值或(和)最小值。并且,這些極值點(diǎn)隨縱波光學(xué)聲子耦合強(qiáng)度的增加向三光子失諧量較小的方向移動(dòng)。與此同時(shí),隨著縱波光學(xué)聲子耦合強(qiáng)度的增加,孤子的群速度呈先增加后減小變化趨勢。第四章,對(duì)現(xiàn)有的研究內(nèi)容作了一個(gè)簡要總結(jié)的同時(shí)并對(duì)半導(dǎo)體量子阱中的光孤子的后續(xù)研究工作進(jìn)行了展望。
[Abstract]:At present, in the information age, the demand for information transmission and processing is higher and higher. Optical solitons as information carriers have obvious advantages over traditional information carriers. The main performance of optical soliton communication is that the transmission capacity of optical soliton communication is large. The repeater has the advantages of large bit error rate, strong anti-electromagnetic interference ability and good security performance. Therefore, how to use optical solitons as the carrier of information transmission and processing in the process of information transmission and processing, It has become a hot topic in the field of physics and information science. The application of electromagnetic induced transparency (EITT) technology and the continuous improvement of semiconductor technology. This makes possible the realization of optical solitons in communication devices. The study shows that the optical solitons in the W EIT medium have the characteristic of ultra-slow group velocity, which makes the storage of optical solitons possible. Semiconductor quantum wells have the characteristics of discrete energy level and large electric dipole moment, which are required by EIT medium. The advantages of controllable and easily integrated coherent evolution are considered to be the most promising media for the application of EIT quantum devices. In semiconductor quantum well EIT media, optical solitons can not only take advantage of the advantages of optical solitons in information transmission and processing. It can also give full play to the potential of practical application of semiconductor quantum well quantum devices. Therefore, the study of optical soliton behavior in semiconductor quantum well EIT media can be used for information transmission and processing. The main content of this paper is the first chapter, which introduces the principle, characteristics and specific phenomena of EIT, then the construction and classification of semiconductor quantum wells. Finally, the research methods and contents of this paper are briefly introduced. The effect of P-wave optical phonon coupling relaxation on the behavior of solitons in cascaded three-level semiconductor quantum wells (EIT) is studied. The results show that with the increase of P-wave optical phonon coupling strength, The system time solitons are transformed from dark solitons to bright solitons, that is, the conversion of dark to bright solitons in cascaded semiconductor quantum wells can be controlled by the coupling intensity of longitudinal wave optical phonons. It is also found that the group velocities of solitons can also be controlled by the coupling strength of P-wave optical phonons and the control light. The effects of P-wave optical phonon coupling effect and higher-order effect on the dynamic properties of soliton in N-type four-level asymmetric semiconductor quantum well (EIT) medium are studied. It is shown that the coupling intensity increases with the increase of P-wave optical phonon coupling strength. The amplitude of soliton decreases first and then increases. It is found that with the increase of three-photon detuning, the amplitude and width of soliton appear maximum or / or minimum when the coupling intensity of optical-phonon is fixed. These extreme points move along with the increase of the optical-phonon coupling intensity of the P-wave to the direction where the three-photon detuning is smaller. At the same time, the group velocity of the soliton increases first and then decreases with the increase of the coupling intensity of the optical-phonon in the P-wave. At the same time, a brief summary of the existing research contents is given, and the further research work on optical solitons in semiconductor quantum wells is also prospected.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O471.1;O437
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉翠紅,郭康賢,陳傳譽(yù),馬本X;電子有效質(zhì)量隨位置變化的半導(dǎo)體量子阱中的光學(xué)整流(英文)[J];光子學(xué)報(bào);1999年11期
2 趙國忠,,王旭,梁希俠;半導(dǎo)體量子阱中電子朗道能級(jí)的共振分裂和釘扎行為[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1994年04期
3 趙勛杰,顧世洧;半導(dǎo)體量子阱中電子的回旋質(zhì)量與溫度的關(guān)系[J];應(yīng)用科學(xué)學(xué)報(bào);1991年01期
4 薛舫時(shí);半導(dǎo)體量子阱隧穿過程中的波阻抗和谷間傳輸比[J];電子學(xué)報(bào);1992年11期
5 ;光電子技術(shù)概論[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2000年05期
6 趙紅東,張存善,周革,沈光地,張以謨;金屬平面半導(dǎo)體量子阱微腔自發(fā)發(fā)射[J];半導(dǎo)體學(xué)報(bào);2000年01期
7 陳愛喜;陳淵;鄧?yán)?鄺耘豐;;非對(duì)稱半導(dǎo)體量子阱中自發(fā)輻射相干誘導(dǎo)透明[J];物理學(xué)報(bào);2012年21期
8 陳愛喜;陳淵;楊紹海;;非對(duì)稱半導(dǎo)體量子阱中的光學(xué)雙穩(wěn)態(tài)與多穩(wěn)態(tài)[J];華東交通大學(xué)學(xué)報(bào);2011年03期
9 魏相飛;楊富強(qiáng);金誠;宋麗影;袁好;;基于InAs/GaSb的二類、斷帶半導(dǎo)體量子阱中載流子的量子態(tài)[J];皖西學(xué)院學(xué)報(bào);2010年05期
10 宋登元;;半導(dǎo)體量子阱激光器(QWL)及其進(jìn)展[J];半導(dǎo)體光電;1990年04期
相關(guān)會(huì)議論文 前1條
1 王琴;;半導(dǎo)體量子阱材料及其物理性能[A];第五屆華北、東北地區(qū)理化會(huì)議論文集[C];1993年
相關(guān)博士學(xué)位論文 前1條
1 張存喜;半導(dǎo)體量子阱和一維光晶格中的量子輸運(yùn)[D];山西大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 鄺耘豐;耦合半導(dǎo)體量子阱中衰變相干及其對(duì)群速色散的影響[D];華東交通大學(xué);2016年
2 唐宏;縱波光學(xué)聲子耦合下半導(dǎo)體量子阱電磁誘導(dǎo)透明介質(zhì)中的光孤子行為[D];湘潭大學(xué);2016年
3 樊為;半導(dǎo)體量子阱中量子隧穿感應(yīng)的克爾非線性增強(qiáng)效應(yīng)的理論研究[D];吉林大學(xué);2009年
4 陳召楚;半導(dǎo)體量子阱中非線性光學(xué)性質(zhì)的研究[D];華東交通大學(xué);2012年
5 李翠莉;半導(dǎo)體量子阱結(jié)構(gòu)隧穿耦合相干的特性及應(yīng)用的研究[D];吉林大學(xué);2015年
6 吳宏偉;微腔內(nèi)半導(dǎo)體量子阱的太赫茲動(dòng)力學(xué)研究[D];吉首大學(xué);2013年
7 陳淵;基于半導(dǎo)體量子阱自發(fā)輻射相干對(duì)弱場傳輸?shù)挠绊慬D];華東交通大學(xué);2013年
本文編號(hào):1646862
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1646862.html