基于表面等離子體的垂直腔面發(fā)射激光器的設(shè)計和研究
發(fā)布時間:2018-03-20 00:35
本文選題:垂直腔面發(fā)射激光器 切入點:金屬表面等離子體 出處:《北京工業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:垂直腔面發(fā)射激光器(Vertical Cavity Surface Emitting Lasers,VCSEL)以其低功耗、低閾值、高光束質(zhì)量、易于二維集成、高調(diào)制速率和低成本制備等優(yōu)勢,現(xiàn)被廣泛地應(yīng)用于光互連、光通信、高速數(shù)據(jù)傳輸?shù)阮I(lǐng)域。然而,傳統(tǒng)的VCSEL諧振腔橫向尺寸縮小到光波長量級時,由于光衍射極限的限制,無法在納米量級上實現(xiàn)與微電子器件的集成。自2007年以來,基于金屬表面等離子體的納米激光器開始被廣泛關(guān)注,由于金屬表面等離子體效應(yīng),不僅可以使器件諧振腔突破光波長衍射極限的限制,而且具有集成度高、光隔離性強(qiáng)、功耗低、以及開關(guān)速度快等優(yōu)勢,因此在光計算、高速數(shù)據(jù)傳輸、信息存儲、超快數(shù)據(jù)通信和生物診斷等領(lǐng)域存在巨大的應(yīng)用潛力。本文以實現(xiàn)VCSEL的小型化為目標(biāo),圍繞金屬-介質(zhì)表面等離子體、金屬波導(dǎo)場分布與模式限制展開深入研究,提出了金屬表面等離子體波導(dǎo)VCSEL的結(jié)構(gòu)。在實驗上制備出表面等離子體波導(dǎo)結(jié)構(gòu)的VCSEL微米柱,并對其進(jìn)行了光致發(fā)光(Photoluminescence,PL)測試。此外,為提高VCSEL的光輸出功率,采用在單個芯片上集成多個VCSEL單元形成二維陣列的方法,制備了2×2和4×4VCSEL陣列器件,通過建立VCSEL陣列的功率轉(zhuǎn)換效率經(jīng)驗?zāi)P?對功率轉(zhuǎn)換效率進(jìn)行了理論分析和擬合計算。本文主要研究內(nèi)容總結(jié)如下:1、根據(jù)VCSEL工作原理、金屬-介質(zhì)表面等離子體電磁場特性和色散模型,計算出三層金屬平板波導(dǎo)結(jié)構(gòu)和五層金屬平板波導(dǎo)結(jié)構(gòu)的模式分布和有效折射率,提出了一種新型的基于金屬表面等離子體效應(yīng)的VCSEL結(jié)構(gòu)。通過計算發(fā)現(xiàn)金屬表面等離子體VCSEL結(jié)構(gòu)具有更強(qiáng)的模式限制作用,橫向尺寸能得到進(jìn)一步減小。2、提出了金屬表面等離子體波導(dǎo)VCSEL的制備工藝流程,并研究了ICP刻蝕規(guī)律和VCSEL微米柱轉(zhuǎn)移等關(guān)鍵制備工藝,最終制備了金屬表面等離子體波導(dǎo)VCSEL微米柱。利用PL測試系統(tǒng)分別對外延片的表面、量子阱結(jié)構(gòu)、以及VCSEL微米柱分別進(jìn)行了測試,并對測試結(jié)果進(jìn)行了理論分析,理論分析與實驗結(jié)果一致。3、對不同氧化孔徑VCSEL陣列的功率轉(zhuǎn)換效率進(jìn)行了理論分析和擬合計算,得到了隨著器件氧化孔徑的增加,功率轉(zhuǎn)換效率峰值先增加后減小的結(jié)論。擬合結(jié)果表明陣列氧化孔徑為18.6μm時,最大的功率轉(zhuǎn)換效率峰值達(dá)到27.91%,并且氧化孔徑在15μm-25μm的范圍內(nèi)的功率轉(zhuǎn)換效率峰值能達(dá)到最大值的99%以上。實驗上16μm和19μm氧化孔徑的2×2 VCSEL陣列的功率轉(zhuǎn)換效率峰值分別為28.6%和27.5%,實驗結(jié)果與擬合計算結(jié)果吻合。
[Abstract]:Vertical Cavity Surface Emitting VCSELL is widely used in optical interconnection and optical communication due to its advantages of low power consumption, low threshold, high beam quality, easy two-dimensional integration, high modulation rate and low cost. However, when the transverse size of the conventional VCSEL resonator is reduced to the wavelength of light, due to the limitation of the optical diffraction limit, it is impossible to integrate with the microelectronic devices in the nanoscale order of magnitude. Nano-lasers based on metal surface plasma have been paid more and more attention. Due to the metal surface plasma effect, the resonator can not only break the limit of wavelength diffraction, but also has high integration and strong optical isolation. Because of the advantages of low power consumption and fast switching speed, there are great potential applications in the fields of optical computing, high-speed data transmission, information storage, ultra-fast data communication and biological diagnosis. This paper aims to achieve miniaturization of VCSEL. The structure of metal surface plasma waveguide (VCSEL) is proposed by studying the field distribution and mode limitation of metal dielectric surface plasma. The VCSEL micron column with surface plasma waveguide structure is fabricated experimentally. In addition, in order to improve the output power of VCSEL, 2 脳 2 and 4 脳 4 VCSEL arrays were fabricated by integrating multiple VCSEL cells on a single chip to form a two-dimensional array. By establishing the empirical model of power conversion efficiency of VCSEL array, the theoretical analysis and fitting calculation of power conversion efficiency are carried out. The main contents of this paper are summarized as follows: 1, according to the working principle of VCSEL, The electromagnetic field characteristics and dispersion model of metal-dielectric surface plasmas are used to calculate the mode distribution and effective refractive index of three-layer planar waveguide structure and five-layer metal planar waveguide structure. A new type of VCSEL structure based on the metal surface plasma effect is proposed. It is found that the metal surface plasma VCSEL structure has a stronger mode limiting effect. The transverse dimension can be further reduced. The fabrication process of metal surface plasma waveguide (VCSEL) is proposed. The ICP etching rule and the key fabrication process such as VCSEL micron column transfer are studied. Finally, the metal surface plasma waveguide VCSEL micron column was prepared. The surface of the epitaxial wafer, the quantum well structure and the VCSEL microcolumn were measured by the PL measurement system, and the results were analyzed theoretically. The theoretical analysis is in agreement with the experimental results. The power conversion efficiency of VCSEL arrays with different oxidation aperture is analyzed theoretically and fitted. The results show that the power conversion efficiency increases with the increase of the oxidation aperture of the device. The conclusion that the peak power conversion efficiency increases first and then decreases. The fitting results show that when the oxidation aperture of the array is 18.6 渭 m, The maximum power conversion efficiency can reach 27.91 and the peak power conversion efficiency of oxidation aperture in the range of 15 渭 m to 25 渭 m can reach more than 99%. Experimentally, the peak power conversion efficiency of 2 脳 2 VCSEL arrays with oxidation aperture of 16 渭 m and 19 渭 m is obtained. The experimental results are in good agreement with the fitting results.
【學(xué)位授予單位】:北京工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN248
,
本文編號:1636755
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1636755.html
最近更新
教材專著