天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電子信息論文 >

微器件的制作和微電鑄均勻性的研究

發(fā)布時(shí)間:2018-03-19 02:22

  本文選題:MEMS 切入點(diǎn):微針 出處:《大連理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文


【摘要】:微型化、集成化和便攜化是科技發(fā)展的一種趨勢(shì),微機(jī)電系統(tǒng)(Micro Electro Mechanical System, MEMS)工藝是實(shí)現(xiàn)器件微型化、集成化和便攜化的重要手段。在MEMS眾多研究方向中,因生物MEMS應(yīng)用潛力大、科技優(yōu)勢(shì)顯著成為研究的熱點(diǎn)之一。其中基于MEMS工藝的微針和微流控芯片是生物MEMS醫(yī)學(xué)應(yīng)用研究的典型器件。背面曝光技術(shù)和微電鑄技術(shù)分別是制作微針和微流控芯片模具的關(guān)鍵技術(shù),然而背面曝光制作微針的技術(shù)尚不成熟,電鑄技術(shù)也存在著鑄層厚度不均勻的問(wèn)題,嚴(yán)重制約了微針和微流控芯片在生物醫(yī)學(xué)方面的應(yīng)用。本文使用模擬軟件Matlab和COMSOL并結(jié)合實(shí)驗(yàn)研究,探究?jī)?yōu)化基于背面曝光工藝制作微針的成型方法和改善電沉積均勻性的可行性措施。本文的研究工作可以為MEMS生物醫(yī)學(xué)的進(jìn)一步發(fā)展積累經(jīng)驗(yàn)。本文基于標(biāo)量角譜衍射理論,利用Matlab軟件進(jìn)行了圓孔衍射的模擬,確定了定值圓孔制作微針的最佳衍射光場(chǎng)范圍。通過(guò)調(diào)整基底厚度、曝光劑量等參數(shù),制作了高度從265μm到380μm,傾角從5.1°到15.6°,底端直徑遠(yuǎn)大于掩膜版上對(duì)應(yīng)圓孔直徑的SU-8膠微針陣列。用微針側(cè)壁傾角和頂部直徑與掩膜版上圓孔直徑的比值R評(píng)價(jià)微針的尖銳程度,分析并討論了實(shí)驗(yàn)中遇到的問(wèn)題。利用電沉積理論和法拉第第一定律推導(dǎo)了電流密度分布與鑄層厚度分布的關(guān)系;陔娏髅芏葦(shù)值分布模型,采用COMSOL模擬軟件,研究了輔助陰極對(duì)陰極電力線和電流密度分布的影響并對(duì)輔助陰極結(jié)構(gòu)進(jìn)行了優(yōu)化,預(yù)測(cè)了鑄層形貌。為驗(yàn)證仿真結(jié)果,采用控制變量法設(shè)計(jì)了比對(duì)實(shí)驗(yàn),用電感測(cè)微儀測(cè)量了電鑄后的鑄層厚度,實(shí)驗(yàn)結(jié)果與仿真結(jié)果趨勢(shì)相同,結(jié)果表明:微電鑄模具的鑄層厚度不均勻度由142.0%縮減至68.9%。基于微電鑄技術(shù)制作了厚度為200μm的鎳金屬模具。為實(shí)現(xiàn)微流控芯片模具的納米結(jié)構(gòu)定域加工,改善其表面性能,使用飛秒激光加工技術(shù)在鎳模具表面加工了微納米結(jié)構(gòu),實(shí)現(xiàn)了鎳模具部分表面由親水性向疏水性的轉(zhuǎn)變。使用熱壓印技術(shù)實(shí)現(xiàn)了微納米結(jié)構(gòu)從鎳模具到PMMA的精確復(fù)制和轉(zhuǎn)移,使用水預(yù)處理鍵合技術(shù)提高了PMMA微流控芯片的鍵合率,最后使用CO2激光加工技術(shù)對(duì)鍵合后的芯片進(jìn)行了外形輪廓的加工,制得了應(yīng)用于病原微生物檢測(cè)的微流控芯片。
[Abstract]:Miniaturization, integration and portability are a trend in the development of science and technology. MEMS Micro Electro Mechanical system is an important means to realize the miniaturization, integration and portability of devices. The advantage of science and technology has become one of the hotspots in the research. Microneedle and microfluidic chip based on MEMS process are typical devices in biomedical application of MEMS. Back exposure technology and microelectroforming technology are the fabrication of microneedle and microflow, respectively. The key technology of controlling chip mould, However, the technology of making microneedle by back exposure is not mature, and the electroforming technology also has the problem of uneven thickness of casting layer. The application of microneedle and microfluidic chip in biomedicine is seriously restricted. In this paper, the simulation software Matlab and COMSOL are used in combination with experimental research. This paper explores the feasibility measures to optimize the fabrication of microneedles based on the back exposure process and to improve the uniformity of electrodeposition. The research work in this paper can accumulate experience for the further development of MEMS biomedicine. This paper is based on the scalar angular spectrum diffraction theory. The Matlab software is used to simulate the diffraction of circular holes, and the optimum range of diffraction light field is determined. By adjusting the thickness of the substrate, the exposure dose and other parameters, the optimum range of diffraction light field is determined. A SU-8 microneedle array with a height of 265 渭 m to 380 渭 m and a dip angle of 5.1 擄to 15.6 擄was fabricated. The diameter of the bottom end was much larger than the corresponding diameter of the circular hole on the mask plate. The sharp degree of the microneedle was evaluated by the inclination angle of the sidewall of the microneedle and the ratio of the top diameter to the diameter of the hole on the mask plate. The relationship between the distribution of current density and the thickness distribution of cast layer is derived by using the theory of electrodeposition and Faraday's law. Based on the model of numerical distribution of current density, the simulation software COMSOL is used. The influence of the auxiliary cathode on the distribution of power line and current density of the cathode is studied, and the structure of the auxiliary cathode is optimized, and the shape of the cast layer is predicted. In order to verify the simulation results, the control variable method is used to design the comparison experiment. The thickness of the cast layer was measured by electroforming micrometer. The experimental results are the same as the simulation results. The results show that the thickness inhomogeneity of cast layer of microelectroforming die is reduced from 142.0% to 68.9. Based on microelectroforming technology, nickel metal dies with thickness of 200 渭 m have been fabricated. Using femtosecond laser processing technology, the micro and nano structure was fabricated on the surface of nickel mould, and the partial surface of nickel mould was changed from hydrophilicity to hydrophobicity. The accurate replication and transfer of micro and nano structure from nickel mould to PMMA was realized by hot stamping technology. The bonding rate of PMMA microfluidic chip was improved by water pretreatment bonding technology. Finally, the profile of the bonded microfluidic chip was processed by CO2 laser processing technology, and the microfluidic chip was prepared for the detection of pathogenic microorganism.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN492

【參考文獻(xiàn)】

中國(guó)期刊全文數(shù)據(jù)庫(kù) 前6條

1 楊建明;;電沉積分布均勻性改善技術(shù)的研究進(jìn)展[J];材料保護(hù);2010年04期

2 馬鑫;蔣炳炎;陳中原;呂輝;Stefan Kirchberg;;屏蔽擋板對(duì)電鑄微模芯厚度均勻性的影響[J];電鍍與環(huán)保;2014年05期

3 王飛;鄧小玖;劉彩霞;謝莉莎;;標(biāo)量衍射理論的非傍軸修正[J];量子電子學(xué)報(bào);2007年01期

4 趙陽(yáng)培,黃因慧,趙劍峰,劉志東,田宗軍;射流電鑄快速成型基礎(chǔ)試驗(yàn)研究[J];南京航空航天大學(xué)學(xué)報(bào);2004年04期

5 劉沖;劉文濤;杜立群;莫順培;;一種三維金屬微型腔的組合加工方法[J];納米技術(shù)與精密工程;2010年01期

6 劉偉;王伊卿;甘代偉;;剛性模具納米熱壓印直接成型技術(shù)研究與應(yīng)用[J];陜西國(guó)防工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報(bào);2010年03期



本文編號(hào):1632408

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1632408.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶922ab***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com