時(shí)間交替采集系統(tǒng)通道失配誤差校準(zhǔn)及帶寬擴(kuò)展方法研究
本文選題:時(shí)間交替 切入點(diǎn):模數(shù)轉(zhuǎn)換 出處:《國(guó)防科學(xué)技術(shù)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:數(shù)據(jù)采集設(shè)備作為混合信號(hào)處理系統(tǒng)中的重要組成單元,是連接真實(shí)的模擬世界和虛擬的數(shù)字世界之間的唯一橋梁,是支撐現(xiàn)代信號(hào)處理的基石。隨著測(cè)量頻譜寬度和瞬時(shí)動(dòng)態(tài)范圍的不斷提升,對(duì)數(shù)據(jù)采集設(shè)備的采樣速度和采樣精度提出了更高的要求。但受到制備工藝和制造材料的限制,單個(gè)模數(shù)轉(zhuǎn)換器(Analog-to-Digital Converter,ADC)的速度和精度已無(wú)法滿足日益增長(zhǎng)的應(yīng)用需求。在現(xiàn)有芯片的條件下,如何進(jìn)一步提升數(shù)據(jù)采集系統(tǒng)的性能指標(biāo)成為一個(gè)亟待解決的問題。時(shí)間交替模數(shù)轉(zhuǎn)換(Time-Interleaved ADCs,TI-ADCs)系統(tǒng)利用多個(gè)低速ADC并行交錯(cuò)采樣能夠?qū)⒉蓸铀俣纫酝ǖ罃?shù)量等比例提升,突破現(xiàn)有芯片性能的制約。然而,TI-ADCs系統(tǒng)的動(dòng)態(tài)性能對(duì)通道間失配誤差極為敏感,任何微小的失配都會(huì)引起嚴(yán)重的動(dòng)態(tài)性能惡化。此外TI-ADCs的另一個(gè)局限是其模擬帶寬并不能如采樣速率一樣隨通道數(shù)量成比例提升,而是受單個(gè)ADC的限制。本文針對(duì)TI-ADCs系統(tǒng)中通道失配誤差的估計(jì)和補(bǔ)償問題以及模擬帶寬的數(shù)字?jǐn)U展技術(shù)展開研究,主要工作如下:第2章研究了TI-ADCs系統(tǒng)模型和失配誤差影響,推導(dǎo)并驗(yàn)證了失配誤差強(qiáng)度和系統(tǒng)動(dòng)態(tài)性能之間的定量關(guān)系,此結(jié)果能夠?yàn)門I-ADCs系統(tǒng)確定誤差容限,為系統(tǒng)設(shè)計(jì)和非線性失配校準(zhǔn)算法提供精度參考標(biāo)準(zhǔn)。第3章研究了TI-ADCs非線性失配誤差的校準(zhǔn)方法,分別提出了一種前向校準(zhǔn)算法和一種自適應(yīng)盲校準(zhǔn)算法。其中,前向校準(zhǔn)算法利用訓(xùn)練信號(hào)估計(jì)失配參數(shù)進(jìn)而利用數(shù)字級(jí)聯(lián)補(bǔ)償結(jié)構(gòu)優(yōu)化系統(tǒng)性能,仿真表明,算法能夠有效抑制非線性失配諧波對(duì)系統(tǒng)動(dòng)態(tài)性能的影響。該算法在達(dá)到相同校準(zhǔn)精度的前提下,相比將單通道ADC非線性誤差優(yōu)化算法簡(jiǎn)單擴(kuò)展至M通道TI-ADCs顯著降低了計(jì)算復(fù)雜度。其次,提出了一種自適應(yīng)盲校準(zhǔn)算法以滿足對(duì)時(shí)變非線性失配誤差的優(yōu)化,算法借助于一定比例的過(guò)采樣以獲取失配諧波分量,利用最小均方算法完成對(duì)失配參數(shù)的自適應(yīng)跟蹤。算法利用離散傅里葉級(jí)數(shù)將M周期的非線性失配誤差轉(zhuǎn)換為M個(gè)與時(shí)間不相關(guān)的失配系數(shù),從而能夠顯著提升模擬頻帶利用率。利用失配鏡像之間的復(fù)共軛關(guān)系對(duì)M通道的自適應(yīng)校準(zhǔn)結(jié)構(gòu)進(jìn)行了優(yōu)化。通過(guò)仿真驗(yàn)證了算法在不同輸入信號(hào)和不同失配強(qiáng)度下的校準(zhǔn)性能。第4章針對(duì)線性失配誤差與非線性失配誤差共存的情況,提出并驗(yàn)證了一種聯(lián)合盲校準(zhǔn)算法。該算法利用一定比例的過(guò)采樣和自適應(yīng)濾波結(jié)構(gòu)實(shí)現(xiàn)混合失配誤差的自適應(yīng)校準(zhǔn),仿真結(jié)果表明,相比利用現(xiàn)有算法處理線性與非線性失配,該算法能夠?qū)崿F(xiàn)更顯著的動(dòng)態(tài)性能提升。針對(duì)寬帶TI-ADCs系統(tǒng)中失配誤差與輸入頻率的相關(guān)性,進(jìn)一步將聯(lián)合校準(zhǔn)算法擴(kuò)展至頻率相關(guān)的混合失配應(yīng)用場(chǎng)景。通過(guò)仿真驗(yàn)證了算法在不同失配模型,輸入信號(hào)以及失配強(qiáng)度下的對(duì)混合失配誤差的優(yōu)化能力。第5章提出了一種基于最小二乘FIR濾波器的帶寬擴(kuò)展方法,首次提出并驗(yàn)證了最小二乘準(zhǔn)則下的濾波器階數(shù)估計(jì)函數(shù),在此基礎(chǔ)上給出了詳細(xì)的濾波器設(shè)計(jì)參數(shù)配置方法,從而能夠有效地縮短設(shè)計(jì)時(shí)間,并為頂層系統(tǒng)設(shè)計(jì)提供準(zhǔn)確的資源配置參考。針對(duì)不同應(yīng)用場(chǎng)景的需求,本文分別提出了優(yōu)先噪聲抑制和優(yōu)先雜散抑制的濾波器的階數(shù)估計(jì)函數(shù)和設(shè)計(jì)參數(shù)配置方法,利用提出的估計(jì)函數(shù)和設(shè)計(jì)參數(shù)配置方法能夠根據(jù)給定的給定的帶寬擴(kuò)展參數(shù)以及通帶和噪聲損耗的約束條件,準(zhǔn)確快速地逼近濾波器設(shè)計(jì)的最優(yōu)參數(shù),如最小濾波器階數(shù),權(quán)值比重,過(guò)渡帶寬度等,從而能夠有效地減少濾波器設(shè)計(jì)時(shí)間。最后,通過(guò)仿真驗(yàn)證了兩種應(yīng)用場(chǎng)景下階數(shù)估計(jì)函數(shù)的精度以及設(shè)計(jì)參數(shù)配置方法的性能。
[Abstract]:The data acquisition equipment as an important unit in mixed signal processing system, is the only bridge between the real world and the virtual simulation of the digital world, is the support of modern signal processing. With the measurement of the width of the spectrum and the cornerstone of the instantaneous dynamic range of continuous improvement, put forward higher requirements for data acquisition device and sampling speed the precision of sampling. But by the preparation process and manufacturing material limit, a single analog to digital converter (Analog-to-Digital Converter, ADC) of the speed and accuracy have been unable to satisfy the application demand. In the existing chip conditions, how to further enhance the performance of the data acquisition system has become an urgent problem in time interleaved analog-to-digital conversion. (Time-Interleaved ADCs TI-ADCs) system using a plurality of low-speed ADC parallel interleaved sampling can be sampled in proportion to the number of channels such as lifting speed L, which break through the existing chip performance. However, the dynamic performance of the TI-ADCs system is very sensitive to the mismatch error, any slight mismatch will cause serious deterioration of dynamic performance. Another limitation of TI-ADCs is the analog bandwidth and not as a kind of sampling rate with the number of channels in proportion to improve but, by a single ADC. According to the estimation and compensation of channel mismatch error in TI-ADCs system and digital analog bandwidth expansion technologies are studied, the main work is as follows: the second chapter studies the TI-ADCs system model and the mismatch effect, deduced and verified the quantitative relationship between the mismatch strength and dynamic performance of the system the results, to determine the tolerance for the TI-ADCs system, provide a reference standard for the accuracy of the system design and nonlinear mismatch calibration algorithm. The third chapter studies the TI-ADCs nonlinear mismatch error The calibration method of difference, respectively, this paper proposes a forward calibration algorithm and an adaptive quasi blind algorithm. The algorithm uses forward calibration parameter mismatch and the use of digital cascade compensation structure optimization of the system performance, the training signal estimation. The simulation results show that the algorithm can effectively restrain the effect of nonlinear harmonic mismatch on the dynamic performance of the system. On the premise of achieving the same algorithm precision, compared to the single channel ADC nonlinear error optimization algorithm is simple extension to M channel TI-ADCs significantly reduces the computational complexity. Secondly, this paper proposed an adaptive blind calibration algorithm to meet the optimal time-varying and nonlinear mismatch error, over sampling to obtain the algorithm based on harmonic component mismatch a certain proportion of the least mean square algorithm to track the adaptive parameter mismatch. The proposed algorithm uses discrete Fourier series with nonlinear error of M cycle loss Conversion to M is not related to the mismatch of coefficient and time, which can significantly improve the analog bandwidth utilization. Optimized by complex conjugate relationship between image with adaptive calibration structure of M algorithm in different channel. The input signal and the different intensity of the mismatch calibration performance is verified by simulation. The fourth chapter according to the linear mismatch error and nonlinear mismatch error coexist situation, propose and validate a joint blind calibration algorithm. Over sampling and adaptive filtering structure to realize hybrid mismatch error calibration algorithm using the adaptive proportion. The simulation results show that compared with the algorithm of linear and nonlinear mismatch existing, the algorithm can to realize the dynamic performance significantly improved. According to the correlation in wideband TI-ADCs system mismatch error and input frequency, further joint calibration algorithm extended to frequency mixing Combination of mismatch scenarios. The algorithm in different mismatch model is verified by simulation, and the input signal strength mismatch on the mixed mismatch error optimization. The fifth chapter puts forward a method of extending the bandwidth of the filter based on least squares FIR, first proposed and verified the function estimation of filter order least squares criterion on this basis, gives the design parameters of filter configuration method in detail, which can effectively shorten the design time, the allocation of resources and provide accurate reference for the top-level system design. According to different application scenarios, this paper puts forward design function and parameter configuration method to estimate the order of priority priority filter noise and spurious suppression the function and design parameters is estimated by using the proposed method can according to the given bandwidth expansion parameters and band noise and loss about Beam conditions, accurate approximation of optimal filter design parameters, such as the minimum filter order, weight proportion, transition zone width, which can effectively reduce the filter design time. Finally, through the simulation of two kinds of application scenarios order estimation precision of the performance function and design parameter configuration method.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN792
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 В.М.Соколов;杰雄;;消除了失配誤差的衰減測(cè)量方法[J];國(guó)外計(jì)量;1991年01期
2 任記達(dá);;時(shí)間交叉采樣失配誤差分析[J];科技視界;2012年07期
3 何廣順;;中頻帶通失配誤差對(duì)自適應(yīng)對(duì)消的影響[J];火控雷達(dá)技術(shù);1993年04期
4 解本釗;;隨機(jī)交替采樣技術(shù)研究[J];黑龍江科技信息;2007年08期
5 劉濟(jì)民;;微波功率校準(zhǔn)中消除失配誤差的一種方法[J];電子測(cè)量技術(shù);1981年04期
6 李福樂;段靜波;王志華;;一種用于降低電容失配誤差的電容選擇配對(duì)技術(shù)[J];電子學(xué)報(bào);2008年02期
7 唐家明;;廣義反射系數(shù)——微波測(cè)量系統(tǒng)中的一個(gè)新概念[J];微波學(xué)報(bào);1980年01期
8 洪亮;張俊杰;;交替并行模數(shù)轉(zhuǎn)換器系統(tǒng)通道的失配誤差[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
9 張德斌;;n端口網(wǎng)絡(luò)散射參數(shù)測(cè)量中失配誤差的修正方法[J];現(xiàn)代雷達(dá);1985年02期
10 秦國(guó)杰;劉國(guó)滿;高梅國(guó);傅雄軍;許們;;一種時(shí)間交替ADC時(shí)間失配誤差自適應(yīng)校正方法[J];儀器儀表學(xué)報(bào);2013年12期
相關(guān)博士學(xué)位論文 前7條
1 李靖;超高速時(shí)間交織模數(shù)轉(zhuǎn)換器的研究與設(shè)計(jì)[D];電子科技大學(xué);2014年
2 高興順;基于FPGA的TIADC寬帶信號(hào)硬件實(shí)時(shí)修正方法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
3 王義楠;時(shí)間交替采集系統(tǒng)通道失配誤差校準(zhǔn)及帶寬擴(kuò)展方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2015年
4 潘卉青;高速TIADC并行采樣系統(tǒng)綜合校正技術(shù)研究[D];電子科技大學(xué);2010年
5 李玉生;超高速并行采樣模擬/數(shù)字轉(zhuǎn)換的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
6 王亞軍;寬帶信號(hào)采樣若干關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2013年
7 高俊楓;高性能低功耗SAR ADC的研究與設(shè)計(jì)[D];電子科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 邱蓉;TIADC系統(tǒng)時(shí)鐘失配誤差校正算法研究[D];北京化工大學(xué);2015年
2 鄒昊;TIADC失配誤差數(shù)字后校準(zhǔn)算法研究及實(shí)現(xiàn)[D];電子科技大學(xué);2014年
3 韓軍明;帶數(shù)字校正的12bit 200MHz DAC研究與設(shè)計(jì)[D];電子科技大學(xué);2015年
4 李迦宇;用于TIADC的一種后臺(tái)校準(zhǔn)算法的研究和實(shí)現(xiàn)[D];合肥工業(yè)大學(xué);2015年
5 杜陽(yáng);超高速ADC數(shù)字后校準(zhǔn)關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2016年
6 潘云勝;基于調(diào)制的時(shí)間交織ADC數(shù)字校準(zhǔn)技術(shù)研究[D];合肥工業(yè)大學(xué);2016年
7 盧婷婷;基于TIADC的數(shù)據(jù)采集系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];東南大學(xué);2016年
8 彭榆淞;基于時(shí)間交錯(cuò)采樣的低功耗示波器設(shè)計(jì)[D];西南交通大學(xué);2017年
9 駢洋;基于時(shí)間交替的高速采集技術(shù)研究與實(shí)現(xiàn)[D];中北大學(xué);2017年
10 王啟;TI-ADC系統(tǒng)通道失配校準(zhǔn)技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2010年
,本文編號(hào):1590101
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1590101.html