微流控芯片內(nèi)微篩結(jié)構(gòu)的制備
本文關(guān)鍵詞: 濕法刻蝕 飛秒激光 微加工 微篩結(jié)構(gòu) 出處:《吉林大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:微型全分析系統(tǒng)(Micro TotalAnalysis Systems, μTAS)又稱微全分析,是使化學(xué)分析設(shè)備微型化的一種系統(tǒng),它將化學(xué)分析設(shè)備高度集成化,是近二十年來逐漸發(fā)展起來的一種新型的微型生化分析系統(tǒng),又可以稱其為芯片實(shí)驗(yàn)室(LabOn A Chip,LOC)或微流控芯片(Microfluidic Chips)。LOC目前已經(jīng)在多個(gè)領(lǐng)域應(yīng)用,尤其是化學(xué)領(lǐng)域和生物領(lǐng)域,例如基因和蛋白分析、新藥開發(fā)、醫(yī)療檢查、環(huán)境監(jiān)測(cè);以及微光學(xué)元件,例如微透鏡、微光柵、波導(dǎo)和微光學(xué)傳感器制作等;用于原位分析反應(yīng)物,例如微流控芯片原位SERS檢測(cè)。微流控芯片成本低廉、樣品消耗量少、環(huán)境污染小、攜帶方便等諸多優(yōu)點(diǎn),會(huì)使其在未來被越來越多人熟知,也將具有更廣泛的應(yīng)用。 隨著微芯片系統(tǒng)尺寸不斷地縮小,有些甚至達(dá)到微米級(jí)別,傳統(tǒng)的制備微芯片的方法,如電子束刻蝕、濕法刻蝕等,不能滿足人們?nèi)找嬖鲩L(zhǎng)的需求。從1960年第一臺(tái)紅寶石激光器的發(fā)明到如今已有五十多年過去,激光的應(yīng)用已逐步滲透到科研領(lǐng)域、工業(yè)制造、醫(yī)學(xué)治療、國(guó)防等生產(chǎn)生活中。微加工技術(shù)是微電子行業(yè)的強(qiáng)力支撐,被廣泛應(yīng)用在微機(jī)電系統(tǒng)、微光電系統(tǒng)、微芯片中,飛秒激光直寫空間分辨率為幾十納米,這么高的得分辨率超過了光學(xué)衍射極限,,因此飛秒激光微納加工技術(shù)更是這種強(qiáng)力支撐中的生力軍,隨著微全分析系統(tǒng)的不斷發(fā)展,微流控芯片中的飛秒激光加工更是吸引越來越多的關(guān)注。文章中解釋了飛秒激光雙光子吸收的原理,并且介紹了微加工系統(tǒng)的搭建方法以及搭建過程中光路需要滿足的某些條件。 本文內(nèi)容主要包括兩個(gè)方面。 1.傳統(tǒng)的濕法腐蝕制備玻璃通道芯片。利用氫氟酸與二氧化硅發(fā)生化學(xué)反應(yīng)腐蝕玻璃基底,通過調(diào)整腐蝕液的配比來控制腐蝕速率,從而得到形貌良好的通道結(jié)構(gòu)。利用得到的微通道,以及聚苯乙烯和鈦酸丁酯的特性,可以獲得通道內(nèi)的微篩結(jié)構(gòu),可以用于光催化反應(yīng)中。 2.利用飛秒激光加工的方法制備微通道內(nèi)的微篩結(jié)構(gòu)。本文提出了雙次“曝光”一次顯影的實(shí)驗(yàn)方法,來制備全SU-8通道內(nèi)微篩結(jié)構(gòu)。雙次“曝光”包括紫外光刻曝光以及飛秒激光直寫加工曝光;一次顯影是指在曝光后對(duì)未顯露的通道和加工結(jié)構(gòu)進(jìn)行統(tǒng)一顯影。實(shí)驗(yàn)想法來自于2010年在LOC雜志上的一篇文章。SU-8材料的通道能夠避免激光加工時(shí),因通道壁與通道內(nèi)填充物折射率不同而對(duì)結(jié)構(gòu)造成影響。
[Abstract]:Micro TotalAnalysis Systems (渭 TAS), also known as micro total analysis, is a system for miniaturization of chemical analysis equipment. It highly integrates chemical analysis equipment and is a new type of micro biochemical analysis system developed gradually in the past twenty years. It can also be called LabOn A Chiploc or Microfluidic Chips).LOC, which has been applied in many fields, especially in chemical and biological fields, such as gene and protein analysis, new drug development, medical examination and environmental monitoring. And the fabrication of microoptical elements, such as microlenses, microgratings, waveguides and microoptical sensors, for in-situ analysis of reactants, such as in-situ SERS detection on microfluidic chips. Many advantages, such as easy to carry, will make it more and more familiar in the future, and will also have a wider application. As the size of the microchip system continues to shrink, some even reach the micron level. Traditional methods of fabricating microchips, such as electron beam etching, wet etching and so on, It has been more than 50 years since the invention of the first ruby laser in 1960, and the application of laser has gradually penetrated into the field of scientific research, industrial manufacture, medical treatment, Micromachining technology is a strong support in the microelectronics industry, and is widely used in micro electromechanical systems, micro optoelectronic systems, microchips, femtosecond laser direct writing spatial resolution of tens of nanometers, Such a high resolution exceeds the limit of optical diffraction, so femtosecond laser micro-nano processing technology is a new force in this kind of strong support, with the continuous development of micro-total analysis system. Femtosecond laser processing in microfluidic chips has attracted more and more attention. The principle of femtosecond laser two-photon absorption is explained in this paper. The construction method of micro-machining system and some conditions of optical path in the process of building are introduced. This paper mainly includes two aspects. 1. Glass channel chips were prepared by traditional wet etching. The glass substrate was corroded by chemical reaction between hydrofluoric acid and silica, and the corrosion rate was controlled by adjusting the proportion of corrosion solution. Using the obtained microchannels and the properties of polystyrene and butyl titanate, the microsieve structures in the channels can be obtained, which can be used in photocatalytic reactions. 2. The microscreen structure in the microchannel was fabricated by femtosecond laser processing. Double "exposures" include UV lithography and femtosecond laser direct writing. A development is a unified development of unexposed channels and processing structures after exposure. The experimental idea was derived from a 2010 article in LOC magazine in which the channels of the SU-8 material were able to avoid laser processing. The structure is affected by the different refractive index of the channel wall and the filling material in the channel.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN492
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣文波;胡松;;傳統(tǒng)光學(xué)光刻的極限及下一代光刻技術(shù)[J];微納電子技術(shù);2008年06期
2 王立鼎,劉沖;微機(jī)電系統(tǒng)科學(xué)與技術(shù)發(fā)展趨勢(shì)[J];大連理工大學(xué)學(xué)報(bào);2000年05期
3 方肇倫;微流控分析芯片發(fā)展與展望[J];大學(xué)化學(xué);2001年02期
4 謝文;劉建國(guó);李平;;一種新型紫外正型光刻膠成膜樹脂的制備及光刻性能研究[J];影像科學(xué)與光化學(xué);2010年01期
5 張錦文;楊化冰;蔣巍;王龍;;Pyrex7740玻璃通孔濕法腐蝕技術(shù)研究[J];功能材料與器件學(xué)報(bào);2011年06期
6 姜軍,周芳,曾俊英,楊鐵鋒;光刻技術(shù)的現(xiàn)狀和發(fā)展[J];紅外技術(shù);2002年06期
7 黃峰,樓祺洪;自鎖模飛秒鈦寶石激光技術(shù)進(jìn)展[J];激光與光電子學(xué)進(jìn)展;1999年08期
8 王亞珍,朱文堅(jiān);微機(jī)電系統(tǒng)(MEMS)技術(shù)及發(fā)展趨勢(shì)[J];機(jī)械設(shè)計(jì)與研究;2004年01期
9 鄭金紅;;光刻膠的發(fā)展及應(yīng)用[J];精細(xì)與專用化學(xué)品;2006年16期
10 范崇政,肖建平,丁延偉;納米TiO_2的制備與光催化反應(yīng)研究進(jìn)展[J];科學(xué)通報(bào);2001年04期
相關(guān)博士學(xué)位論文 前2條
1 魏慧斌;微流控芯片—質(zhì)譜聯(lián)用技術(shù)用于細(xì)胞代謝及相互作用研究[D];清華大學(xué);2011年
2 宋永欣;微流控芯片上單細(xì)胞生物電子檢測(cè)和介電操控技術(shù)研究[D];大連海事大學(xué);2012年
本文編號(hào):1519189
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1519189.html