基于實頻技術(shù)的功率放大器研究
發(fā)布時間:2018-02-13 16:57
本文關(guān)鍵詞: 實頻技術(shù) 網(wǎng)絡(luò)綜合 雙帶 寬帶功率放大器 連續(xù)類功率放大器 Doherty Chebyshev濾波器 出處:《電子科技大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:功率放大器(或功放)是無線發(fā)射系統(tǒng)中的一個重要部件,所以功放的研究顯得尤為重要。功放設(shè)計者需要具備充分的理論基礎(chǔ)和工程經(jīng)驗才能設(shè)計出滿足應(yīng)用需求的產(chǎn)品,這就要求設(shè)計者事先投入大量的時間和精力,從而增加了開發(fā)成本。為了解決這一問題,本論文通過對高性能的功放結(jié)構(gòu)和匹配網(wǎng)絡(luò)設(shè)計理論的研究,為功放的程序化設(shè)計提供了一定的理論基礎(chǔ)并給出了匹配網(wǎng)絡(luò)的實現(xiàn)方案。首先,本論文對功放的性能提升技術(shù)進行了研究,其內(nèi)容包括:降低電路網(wǎng)絡(luò)的優(yōu)化變量數(shù)目、提升功放效率、抑制并發(fā)模式下的帶間交調(diào)分量、濾除諧波功率。為此,提出了一種半解析的匹配方法、一種雙路雙帶功放結(jié)構(gòu)、一種諧波有損的匹配結(jié)構(gòu)。其次,針對寬帶和雙帶功放匹配網(wǎng)絡(luò)的實現(xiàn)問題,提出了基于實頻技術(shù)的分布參數(shù)網(wǎng)絡(luò)匹配方法。最后,提出了一類準(zhǔn)切比雪夫阻抗函數(shù),其可以應(yīng)用到實頻技術(shù)的高階匹配網(wǎng)絡(luò)設(shè)計中;提出了一種網(wǎng)絡(luò)綜合方法,以保證高階阻抗函數(shù)能順利地完成網(wǎng)絡(luò)綜合。本文的主要內(nèi)容和創(chuàng)新點如下:1、提出了一種半解析的功放匹配網(wǎng)絡(luò)設(shè)計方法。該方法讓匹配網(wǎng)絡(luò)中各元件以等電長度的方式進行構(gòu)建,能有效地降低匹配網(wǎng)絡(luò)中優(yōu)化變量的數(shù)目,而這種電路網(wǎng)絡(luò)與由集總參數(shù)構(gòu)成的匹配網(wǎng)絡(luò)的匹配能力相當(dāng)。在匹配實現(xiàn)過程中,為了進一步地降低變量數(shù)目,又把匹配網(wǎng)絡(luò)的設(shè)計分為三步,從而達(dá)到快速尋找最優(yōu)匹配網(wǎng)絡(luò)的目的。通過一個2.4/3.5GHz的雙帶功放和0.9-2GHz的超寬帶級聯(lián)功放的匹配設(shè)計,驗證了這種半解析方法的有效性。2、提出了一種雙路雙帶功放結(jié)構(gòu),該結(jié)構(gòu)能確保雙帶功放在兩個頻帶都具有最優(yōu)的性能,同時還可以抑制諧波和帶間交調(diào)分量。這一結(jié)構(gòu)通過一個工作在0.9/1.8GHz的雙帶功放和一個工作在1.8/2.5GHz雙帶Doherty進行了驗證。本文也提出了一種諧波有損的拓?fù)浣Y(jié)構(gòu),它不但具有諧波抑制作用還能預(yù)防諧波阻抗失配引起的性能惡化。這一結(jié)構(gòu)通過一款1.6-2.6GHz的寬帶功放進行了驗證。3、提出了一種基于實頻技術(shù)的分布參數(shù)匹配網(wǎng)絡(luò)設(shè)計方法。該方法使用的代價函數(shù)能更好地描述功放阻抗的匹配情況;也引入了Richards變換,以便得到能代表分布參數(shù)匹配網(wǎng)絡(luò)的阻抗函數(shù)。通過一款0.9-2.8GHz的寬帶功放對所提出方法進行了驗證。測試結(jié)果顯示,在工作頻帶內(nèi),輸出功率大約為39.5dBm,附加效率介于52.2%-85.1%之間,增益在14.2-16.8dB的范圍內(nèi)。4、提出了一種基于實頻技術(shù)的次最優(yōu)雙帶功放設(shè)計方法。該次最優(yōu)設(shè)計方法擴展了阻抗解空間,使基波與二次諧波間的阻抗映射關(guān)系變成了區(qū)域到區(qū)域的映射。同時,提出了一種基于驅(qū)動點阻抗函數(shù)的增強型代價函數(shù),它能更好地控制諧波阻抗。為了驗證這種匹配網(wǎng)絡(luò)設(shè)計方法,通過一款2.4/3.5GHz的雙帶功放進行說明。兩個帶的增益分別為10.6dB和11.2dB,輸出功率分別為40.6dBm和41.2dBm,漏極效率分別為70.3%和71.4%。5、提出了一種基于Feldtkeller矯正的網(wǎng)絡(luò)綜合方法。該方法通過Feldtkeller等式實時地對剩余阻抗函數(shù)進行矯正,以保證函數(shù)中的各系數(shù)得到矯正,從而確保了網(wǎng)絡(luò)綜合的順利進行。通過對100個隨機產(chǎn)生的35階阻抗函數(shù)進行網(wǎng)絡(luò)綜合,所得到的平均相對誤差為3.7565*10~(-5),該實驗表明此綜合方法能勝任低于36階的阻抗函數(shù)。6、提出了一種基于實頻技術(shù)和拓展切比雪夫函數(shù)的半解析設(shè)計方法。所提出的準(zhǔn)切比雪夫函數(shù),在相同的階數(shù)、相同的阻抗變換比和特定反射系數(shù)的限定條件下,仍然具有一族阻抗函數(shù)能完全滿足這些條件。從這一類阻抗函數(shù)中綜合出的第一個元件值分布在一個較大的范圍內(nèi),可從中選擇一個能完全吸收晶體管的寄生參數(shù)和封裝參數(shù)的阻抗函數(shù),使這些寄生和封裝元件作為匹配網(wǎng)絡(luò)的一部分。這樣,在這一阻抗函數(shù)匹配下,從電流源端面看出的基波阻抗為一實數(shù),能使基波處于較好的匹配狀態(tài)。把這一函數(shù)作為實頻技術(shù)網(wǎng)絡(luò)函數(shù)實現(xiàn)的初始值,通過幾次迭代便能得到一個最優(yōu)的匹配網(wǎng)絡(luò)。根據(jù)實際需求,也可以直接地把這一族阻抗函數(shù)靈活地應(yīng)用到濾波器或者阻抗變換器的設(shè)計中。為了驗證這一方法的可行性,設(shè)計兩個分別工作于1.7-2.4GHz和1.6-3.5GHz的寬帶功放。
[Abstract]:The power amplifier (or power amplifier) is an important component of a wireless transmission system, so the power amplifier power amplifier research is particularly important. Designers need to have sufficient theoretical basis and engineering experience can be designed to meet the application needs of the product, which requires designers to spend a lot of time and energy, thus increasing the cost of development. In order to to solve this problem, this paper through the research of high performance power amplifier structure and matching network design theory, provides certain theoretical foundation for the program design and implementation scheme of power amplifier is given matching network. Firstly, the performance of power amplifier lifting technology is studied, which includes the number of optimization variables to reduce the circuit network, improve power efficiency, inhibit the subsequent pattern between the band intermodulation components, eliminating harmonic power. Therefore, this paper proposes a kind of semi analytical matching Method, a dual band power amplifier structure, matching structure of a harmonic loss. Secondly, aiming at the problem of implementation of broadband and dual band power amplifier matching network, is proposed to match the distribution parameters of network technology based on the real frequency method. Finally, a quasi Chebyshev impedance function is proposed, which can be applied to high order matching network the design of the real frequency technique; puts forward a comprehensive method of network, to ensure the high order impedance function can successfully complete the network. The main contents and innovations of this paper are as follows: 1, the paper presents a semi analytical power amplifier matching network design method. This method makes the matching network for each component in the electric length the way of construction, can effectively reduce the number of optimization variables, in the network, and the matching ability of network, the network and the circuit consists of lumped parameter equivalent. In the matching process, in order to further Reduce the number of variables, and the design of matching network is divided into three steps, so as to achieve the purpose of finding the optimum matching network. By matching the design of ultra wideband amplifier cascade a 2.4/3.5GHz dual band power amplifier and 0.9-2GHz, to verify the validity of the.2 semi analytical method, proposed a dual band power amplifier structure, the structure can ensure that the dual power amplifier has the best performance in two bands, but also can suppress harmonic and inter band intermodulation components. This structure by a 0.9/1.8GHz dual band power amplifier and a pair of Doherty in 1.8/2.5GHz was verified. This paper also presents the topological structure of a harmonic loss it not only has the performance degradation of harmonic suppression can prevent harmonic impedance mismatch. This structure was verified by a 1.6-2.6GHz.3 broadband power amplifier, is presented based on the real frequency Matching technology of distributed parameter network design method. The cost function used in this method can better describe the matching of power amplifier impedance; also introduces Richards transform, in order to obtain the representative distribution parameters of impedance matching network function. Through the broadband power amplifier is a 0.9-2.8GHz of the proposed method was verified. The test results show that, in the work within the band, the output power is about 39.5dBm, additional efficiency is 52.2%-85.1%, the gain in the range of 14.2-16.8dB.4, proposed a real frequency technique is sub optimal design method based on dual power amplifier. The optimal design method of extended impedance solution space, the impedance mapping between the fundamental and two harmonic mapping between turns area to area. At the same time, we proposed an enhanced cost function based on the driving point impedance function, it can better control the harmonic impedance. In order to verify this. Distribution network design method, described by a 2.4/3.5GHz dual band power amplifier with gain. Two were 10.6dB and 11.2dB, the output power was 40.6dBm and 41.2dBm, the drain efficiency of 70.3% and 71.4%.5 respectively, puts forward a comprehensive network correction method based on Feldtkeller. This method uses Feldtkeller equation in real time the remaining impedance function is corrected, to ensure that all the coefficients of the functions have been corrected, so as to ensure the comprehensive network smoothly. Through the comprehensive network of 100 randomly generated 35 order impedance function, the average relative error is obtained by 3.7565*10~ (-5), the experimental results show that this method is capable of integrated impedance function is lower than.6 36 order, based on real frequency technique and extended Chebyshev semi analytical design method. Quasi Chebyshev function is presented, in order of the same, the same impedance Qualification conversion ratio and specific reflection coefficient, still has a impedance function can fully meet these conditions. The first element is synthesized from this sort of impedance function values in the distribution in a larger range, the impedance function can choose a parasitic parameters can be fully absorbed and packaging parameters from transistor that makes these parasitic and packaging components as part of the matching network. So, in this, the impedance function, the impedance seen from the end of the current source is real, the fundamental in the matching state better. The initial function as the real frequency technique network function value by several times the iteration can get an optimal matching network. According to the actual demand, can also be directly to the family of impedance function is flexibly applied to design filters or impedance converter. In order to verify this method The feasibility of designing two broadband power amplifiers that work on 1.7-2.4GHz and 1.6-3.5GHz respectively.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TN722.75
【參考文獻】
相關(guān)期刊論文 前3條
1 方箭;李景春;黃標(biāo);馮巖;;5G頻譜研究現(xiàn)狀及展望[J];電信科學(xué);2015年12期
2 張麟兮;張曼;;基于實頻技術(shù)的超寬帶GaN功率放大器研究[J];電視技術(shù);2013年07期
3 王小軍;聶,
本文編號:1508645
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1508645.html
最近更新
教材專著