高速數(shù)字電路設(shè)計中電源噪聲抑制的研究
發(fā)布時間:2018-02-07 16:38
本文關(guān)鍵詞: 信號完整性 電磁帶隙結(jié)構(gòu) 電源分配網(wǎng)絡(luò) 同時開關(guān)噪聲 出處:《西安電子科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著大數(shù)據(jù)時代的來臨和云計算的興起,“處理速度要求快,時效性要求高”是大數(shù)據(jù)區(qū)分于傳統(tǒng)數(shù)據(jù)最顯著的特征。高速的傳輸和大量數(shù)據(jù)的處理要求,給電路板(PCB)的設(shè)計帶來了很多問題。首先由于時鐘邊沿速率變快,信號的高頻分量頻率越來越高,除了會影響信號的傳輸質(zhì)量,產(chǎn)生反射、串?dāng)_噪聲,還會對電源分配網(wǎng)絡(luò)的穩(wěn)定供電造成很大影響。在高速電路和混合信號電路的設(shè)計中,減小電源分配網(wǎng)絡(luò)噪聲是電源完整性設(shè)計的一個主要研究方向。為了減小封裝或印刷電路板(PCB)上的電源噪聲,常用的解決方法主要基于去耦或隔離的思想。本文介紹了電源分配網(wǎng)絡(luò)(PDN)的組成結(jié)構(gòu),并通過分析一些常見電源噪聲產(chǎn)生的原理,使用去耦和隔離的思想介紹了一些減小電源噪聲的方法。去耦的主要目的是使電源分配網(wǎng)絡(luò)(PDN)在寬的頻率范圍內(nèi)保持較小的阻抗值。而隔離設(shè)計則是通過使部分PDN為高阻抗,從而減少電源噪聲的傳播。本文研究的主要是電源分配網(wǎng)絡(luò)中電源噪聲的抑制問題,重點介紹了同時開關(guān)噪聲(SSN)的產(chǎn)生原理和抑制方法。首先,介紹了高速電路發(fā)展歷程以及現(xiàn)在面臨的主要問題;接著,介紹PDN各組成部分及高頻電路設(shè)計中各種噪聲的影響,討論去除電源噪聲的方法及對應(yīng)的原理,分析這些方法的優(yōu)缺點。然后分析了同時開關(guān)噪聲(SSN)的產(chǎn)生原理,為了降低SSN噪聲對電源分配網(wǎng)絡(luò)(PDN)的影響,提出了一些抑制同時開關(guān)噪聲(SSN)的方法。比較傳統(tǒng)的方法有加入去耦電容,分割電源平面等。然而這些傳統(tǒng)的方法抑制帶寬太窄、成本太高而不能被廣泛采用。針對現(xiàn)有方法的缺點和不足,本文介紹了電磁帶隙結(jié)構(gòu)(EBG)抑制SSN噪聲的方法,使用電磁帶隙結(jié)構(gòu)(EBG)可以很好的解決以上問題。此外還提出新型的內(nèi)嵌式電磁帶隙結(jié)構(gòu),該結(jié)構(gòu)在電源層采用傳統(tǒng)L-Bridge電磁帶隙結(jié)構(gòu),在L-Bridge的結(jié)構(gòu)中又內(nèi)嵌了一個反向的L-Bridge結(jié)構(gòu),地平面保持完整。加入反向的L-Bridge結(jié)構(gòu)后,相較于傳統(tǒng)EBG結(jié)構(gòu),在內(nèi)嵌式L-Bridge內(nèi)部在-30dB的抑制深度下,抑制帶寬有很大程度提升,抑制帶寬為0.38-10 GHz。根據(jù)該結(jié)構(gòu)的結(jié)構(gòu)特征,給出低頻工作時的集總等效電路模型,得到了諧振點的計算公式,使用諧振腔模型估算新結(jié)構(gòu)的上截止頻率。最后,分析該新型結(jié)構(gòu)在內(nèi)嵌式結(jié)構(gòu)內(nèi)部和外部走線的信號傳輸特性,通過仿真驗證該EBG結(jié)構(gòu)對信號完整性的影響。得出結(jié)論,相較于傳統(tǒng)L-Bridge結(jié)構(gòu),嵌入反向ML-Bridge后顯著提高了內(nèi)部結(jié)構(gòu)的阻帶寬度和抑制深度,同時保證了內(nèi)嵌結(jié)構(gòu)外部區(qū)域布線的信號完整性。根據(jù)理論估算公式,通過調(diào)節(jié)內(nèi)嵌結(jié)構(gòu)的大小及各結(jié)構(gòu)參數(shù)可以優(yōu)化阻帶特性。
[Abstract]:With the advent of big data era and the rise of cloud computing, "fast processing speed, high timeliness requirements" is the most significant feature that big data distinguishes from traditional data. It brings many problems to the design of PCB. Firstly, because the rate of clock edge becomes faster and faster, the frequency of high frequency component of the signal becomes higher and higher. Besides, it will affect the transmission quality of the signal, produce reflection and crosstalk noise. In the design of high speed circuit and mixed signal circuit, Reducing power distribution network noise is one of the main research directions in power integrity design. The common solutions are mainly based on decoupling or isolation. This paper introduces the structure of PDN, and analyzes the principle of noise generation. This paper introduces some methods to reduce power noise by decoupling and isolating. The main purpose of decoupling is to keep the impedance of power distribution network in a wide frequency range. In order to reduce the propagation of power noise, this paper mainly studies the suppression of power noise in power distribution network, especially introduces the generation principle and suppression method of simultaneous switching noise (SSN). This paper introduces the development of high speed circuit and the main problems it faces now, then introduces the influence of various noises in the design of PDN components and high frequency circuits, and discusses the methods of removing the noise from power supply and the corresponding principle. The advantages and disadvantages of these methods are analyzed. Then, the principle of simultaneous switching noise (SSN) generation is analyzed. In order to reduce the influence of SSN noise on power distribution network (PDN), Some methods of suppressing simultaneous switching noise (SSN) are proposed. The traditional methods include adding decoupling capacitance, dividing the power plane, etc. However, these traditional methods are too narrow in bandwidth. The cost is too high to be widely used. In view of the shortcomings and shortcomings of the existing methods, this paper introduces the method of SSN noise suppression by electromagnetic bandgap structure. In addition, a new embedded electromagnetic band gap structure is proposed, which adopts the traditional L-Bridge electromagnetic band gap structure in the power supply layer, and embedded a reverse L-Bridge structure in the L-Bridge structure. The ground plane remains intact. Compared with the traditional EBG structure, the embedded L-Bridge has a significant increase in the suppression bandwidth of 0.38-10 GHz compared with the traditional L-Bridge structure at a depth of -30 dB. The lumped equivalent circuit model for low frequency operation is given, and the formula for calculating the resonance point is obtained. The upper cutoff frequency of the new structure is estimated by using the resonant cavity model. The signal transmission characteristics of the inner and outer lines of the new structure are analyzed. The influence of the EBG structure on the signal integrity is verified by simulation. The conclusion is drawn that compared with the traditional L-Bridge structure, After embedding the reverse ML-Bridge, the stopband width and suppression depth of the inner structure are improved significantly, and the signal integrity of the external region of the embedded structure is ensured. The stopband characteristics can be optimized by adjusting the size of the embedded structure and the structural parameters.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN41
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 史凌峰;林凱;袁冰;葉強(qiáng);趙亞楠;;不等長非均勻有損耗傳輸線FDTD瞬態(tài)分析[J];電波科學(xué)學(xué)報;2011年04期
,本文編號:1494825
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1494825.html
最近更新
教材專著