基于常規(guī)原理圖方式的可逆邏輯描述與綜合方法
本文關(guān)鍵詞: 可逆邏輯電路 經(jīng)典邏輯門 功能性描述和驗證 可逆算術(shù)運(yùn)算單元 等功能代換 出處:《東華大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著眾多學(xué)者日漸認(rèn)可Landauer提出的計算過程的能量消耗與計算的可逆性有必然聯(lián)系的理論,可逆邏輯電路因而被視為降低集成電路功耗和延續(xù)相關(guān)技術(shù)、產(chǎn)業(yè)發(fā)展的必由之路,吸引著科學(xué)界越來越多的關(guān)注。但由于可逆邏輯電路“誕生”不久,相關(guān)經(jīng)驗和知識奇缺,而且特點突出(即與常規(guī)電路差異較大),國內(nèi)外有關(guān)研究尚于起步階段,有關(guān)的理論體系和技術(shù)平臺均遠(yuǎn)未成熟甚至空白。另一方面,常規(guī)(非可逆)邏輯設(shè)計經(jīng)過長期發(fā)展,已形成相當(dāng)成熟的理論體系和技術(shù)平臺,特別是功能強(qiáng)大、使用方便的EDA(電子設(shè)計自動化)技術(shù)和工具。因此論文著重研究將常規(guī)邏輯設(shè)計移植,復(fù)用于可逆邏輯設(shè)計的方法,并依賴于成熟的EDA技術(shù)和工具實現(xiàn)基于常規(guī)原理圖方式的可逆ALU算術(shù)運(yùn)算單元的可逆描述驗證。鑒于除“非門”外的傳統(tǒng)邏輯門均不可逆,大多數(shù)可逆邏輯門均系重新定義、設(shè)計。其中常用的有CNOT門、Toffoli系列門和Fredkin門等。受可逆性約束,可逆邏輯電路和可逆門具有輸入和輸出在個數(shù)上相同,在組合上雙射的特點,其對應(yīng)功能表也是相互映射的可逆真值表。因為常規(guī)邏輯與可逆邏輯之間最大的差異具體體現(xiàn)在計算的可逆性上,但它們邏輯表達(dá)式所實現(xiàn)的功能本質(zhì)上是相同的,因此,文中提出兩種可逆邏輯電路的設(shè)計方法,第一種是利用常規(guī)邏輯門的組合,等功能地表達(dá)和替換可逆邏輯電路中的各種可逆邏輯門,進(jìn)而利用EDA工具(Quaruts II)對可逆邏輯電路進(jìn)行功能仿真驗證;第二種是利用可逆邏輯門的組合,等功能地表達(dá)和替換常規(guī)邏輯電路中的各種常規(guī)邏輯門,進(jìn)而根據(jù)成熟的、經(jīng)過充分驗證的常規(guī)邏輯電路(如利用EDA工具設(shè)計的多位ALU單元電路),轉(zhuǎn)化成為等功能的可逆邏輯電路,從而實現(xiàn)較大規(guī)模、較復(fù)雜可逆邏輯電路的功能設(shè)計。運(yùn)用上述兩種方法結(jié)合人工修正,論文完成了可逆加法器、可逆減法器、可逆乘法器及可逆除法器的設(shè)計,從而完成了最基本的可逆ALU算術(shù)運(yùn)算單元的功能設(shè)計。由于可逆加法器和可逆減法器皆是在全加器的基礎(chǔ)上設(shè)計的,把原本兩個獨立設(shè)計的模塊合并有效地兼顧實現(xiàn)加法和減法的功能。最終的仿真結(jié)果顯示該可逆算術(shù)運(yùn)算單元能夠?qū)崿F(xiàn)多位數(shù)的加法、減法和乘法功能,以及除法功能。在一定程度上,該論文的成果可為實現(xiàn)從現(xiàn)行常規(guī)邏輯到未來可逆邏輯的成果繼承和平穩(wěn)過渡提供研究資料和參考。
[Abstract]:With the increasing acceptance of Landauer's theory that the energy consumption of computing process is related to the reversibility of computation, many scholars have accepted that there is an inevitable relationship between the energy consumption and the reversibility of calculation. As a result, reversible logic circuits are regarded as reducing the power consumption of integrated circuits and extending related technologies. The only way to develop industry is attracting more and more attention from the scientific community. However, the reversible logic circuits are not long since the birth of reversible logic circuits. The relevant experience and knowledge are extremely scarce, and the characteristics are outstanding (that is, the difference with the conventional circuit is big, the domestic and foreign related research is still in the initial stage, the relevant theoretical system and technical platform are far from mature or even blank. On the other hand. After a long period of development, conventional (non-reversible) logic design has formed a quite mature theoretical system and technical platform, especially the powerful function. The paper focuses on the method of transplanting the conventional logic design to reversible logic design by using the convenient EDA (Electronic Design Automation) technology and tools. The reversible description verification of reversible ALU arithmetic unit based on conventional schematic diagram is realized based on mature EDA technology and tools. In view of the fact that the traditional logic gates except "non-gate" are not reversible. Most reversible logic gates are redefined and redesigned. Among them, CNOT gates, Toffoli series gates, Fredkin gates, etc., are subject to reversibility constraints. The reversible logic circuit and the reversible gate have the same number of inputs and outputs and bijection in combination. The corresponding function list is also a reversible truth table mapped to each other, because the biggest difference between conventional logic and reversible logic is the reversibility of calculation. However, the functions of their logical expressions are essentially the same. Therefore, two design methods of reversible logic circuits are proposed in this paper, the first is the combination of conventional logic gates. The reversible logic gates in reversible logic circuits are expressed and replaced with equal functions, and the reversible logic circuits are verified by EDA tools. The second is to use the combination of reversible logic gates and other functions to express and replace the conventional logic gates in the conventional logic circuits, and then according to the mature. The conventional logic circuit (such as the multi-bit ALU cell circuit designed with EDA tools), which has been fully verified, is transformed into a reversible logic circuit with equal functions, thus realizing a large scale. The design of reversible adder, reversible subtraction, reversible multiplier and reversible divider is completed by using the above two methods combined with manual correction. Thus the function design of the most basic reversible ALU arithmetic unit is completed, because the reversible adder and the reversible subtraction are designed on the basis of the full adder. The original two independently designed modules are combined to effectively realize the functions of addition and subtraction. Finally, the simulation results show that the reversible arithmetic unit can achieve the functions of multi-digit addition, subtraction and multiplication. To a certain extent, the results of this paper can provide research materials and references for the inheritance and smooth transition from the current conventional logic to the future reversible logic.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TN791
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易尚紅;邏輯電路中競爭現(xiàn)象的普遍性[J];株洲師范高等?茖W(xué)校學(xué)報;2003年05期
2 ;復(fù)旦大學(xué)具有自主知識產(chǎn)權(quán)的可編程邏輯電路通過專家鑒定[J];工業(yè)控制計算機(jī);2004年09期
3 劉杰;韋永梅;;非鐘控狀態(tài)下的判優(yōu)邏輯電路研究[J];太原科技大學(xué)學(xué)報;2005年04期
4 孫瑋;;邏輯電路系列的比較[J];集成電路應(yīng)用;1990年01期
5 丁衛(wèi)東;;“簡單邏輯電路”教學(xué)要略[J];物理教師;2010年11期
6 李如虎;;初探簡單邏輯電路的分析方法[J];中學(xué)物理教學(xué)參考;2010年09期
7 鮑翔;;簡單邏輯電路在生活中的應(yīng)用[J];物理教師;2011年04期
8 ;邏輯電路、脈沖電路[J];電子科技文摘;2000年01期
9 富鋼,富程;可編程邏輯電路實驗儀的開發(fā)[J];微處理機(jī);2001年02期
10 劉宏忠,王新民,劉海峰;邏輯電路化簡方法的探討[J];河北大學(xué)學(xué)報(自然科學(xué)版);2004年03期
相關(guān)會議論文 前9條
1 趙駿;陳漢武;陳開中;肖芳英;;可逆邏輯電路多余門錯誤的檢測[A];全國第十三次光纖通信暨第十四屆集成光學(xué)學(xué)術(shù)會議論文集[C];2007年
2 莊保安;王鋒;顧樹棣;王煥玉;沈定力;;一種靈活快速的可編程多功能邏輯電路[A];第7屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集(二)[C];1994年
3 趙帆;姜巖峰;;基于深亞微米工藝的多米諾邏輯電路設(shè)計[A];2009通信理論與技術(shù)新發(fā)展——第十四屆全國青年通信學(xué)術(shù)會議論文集[C];2009年
4 陳開中;肖芳英;李志強(qiáng);陳漢武;;基于群論的可逆邏輯電路綜合方法的研究[A];全國第十三次光纖通信暨第十四屆集成光學(xué)學(xué)術(shù)會議論文集[C];2007年
5 袁小龍;張文淵;郄利波;;一種新的邏輯電路初始劃分算法[A];計算機(jī)技術(shù)與應(yīng)用進(jìn)展——全國第17屆計算機(jī)科學(xué)與技術(shù)應(yīng)用(CACIS)學(xué)術(shù)會議論文集(下冊)[C];2006年
6 陳婷婷;李哲英;;USB2.0數(shù)據(jù)傳輸環(huán)節(jié)邏輯電路低功耗設(shè)計[A];全國第十屆信號與信息處理、第四屆DSP應(yīng)用技術(shù)聯(lián)合學(xué)術(shù)會議論文集[C];2006年
7 白德風(fēng);呂長志;張U,
本文編號:1473063
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1473063.html