生長在不同工藝條件下的氮化鎵外延層的發(fā)光診斷探究
發(fā)布時間:2018-01-21 18:35
本文關(guān)鍵詞: 氮化鎵 金屬有機(jī)氣相沉積法 位錯 陰極射線發(fā)光 光致發(fā)光 出處:《吉林大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:半導(dǎo)體材料已經(jīng)廣泛應(yīng)用于我們的生產(chǎn)生活中,發(fā)揮了重要的作用。這是一種導(dǎo)電性能介于導(dǎo)體與絕緣體的材料。在電視機(jī),,收音機(jī)以及很多測溫裝置中都能找到半導(dǎo)體材料的身影。由于他導(dǎo)電性可受控制,從科技和經(jīng)濟(jì)發(fā)展的角度上看,半導(dǎo)體材料具有非常巨大的重要性,如今在21世紀(jì),我們身邊的半導(dǎo)體材料已經(jīng)所處可見,例如計算機(jī),手機(jī)等電子設(shè)備,汽車防撞雷達(dá)等汽車光電子市場領(lǐng)域,光電通信領(lǐng)域,軍工領(lǐng)域,LED半導(dǎo)體照明領(lǐng)域等等。常見的半導(dǎo)體材料有硅、鍺、砷化鎵等。 第三主族的元素作為一種非常有前景的光學(xué)材料被廣泛的應(yīng)用于光電設(shè)備的研發(fā)當(dāng)中。目前已經(jīng)制造出從紫外到紅外波段工作的多種光電二極管、激光二極管、全色光電二極管顯示器等等。而其中氮化鎵作為其中一種具有較大禁帶寬度的半導(dǎo)體,引起了人們的注意并著重于對其研究,目前氮化鎵作為一種優(yōu)良的光學(xué)材料成為具有重要應(yīng)用價值的半導(dǎo)體。 我們的研究材料為生長c面藍(lán)寶石襯底的不同位錯密度的氮化鎵薄膜,主要是改變位錯密度,研究位錯密度對于材料發(fā)光的影響。本文主要針對氮化鎵外延層采用光致發(fā)光和陰極射線發(fā)光兩種研究方法,研究位錯密度對氮化鎵層激子強(qiáng)度的影響。氮化鎵層通過金屬有機(jī)氣相沉積生長在c面的藍(lán)寶石襯底上。我們的研究是通過脈沖發(fā)光光譜來說明的。 預(yù)期結(jié)論:位錯密度會對材料的發(fā)光強(qiáng)度產(chǎn)生影響。我們根據(jù)實驗結(jié)果分析,改變位錯密度能使材料能夠具有更大的發(fā)光效率,并得出能夠更好的對氮化鎵外延層位錯進(jìn)行控制的經(jīng)濟(jì)快速的方法,以便于我們更好的制作出優(yōu)良的半導(dǎo)體器件以及光電子設(shè)備。
[Abstract]:Semiconductor materials have been widely used in our production and life, playing an important role. This is a kind of conductive materials between conductors and insulators. Semiconductor materials can be found on radios and many thermometers. Because their conductivity is controlled, semiconductor materials are of great importance in terms of technology and economic development. Now in 21th century, the semiconductor materials around us are already visible, such as computers, mobile phones and other electronic devices, automotive photoelectron market area such as automotive anti-collision radar, optoelectronic communication field, military field. LED semiconductor lighting field and so on. Common semiconductor materials are silicon, germanium, gallium arsenide and so on. As a promising optical material, the elements of the third host group have been widely used in the research and development of optoelectronic devices. At present, many photodiodes have been fabricated which work from ultraviolet to infrared bands. Laser diodes, panchromatic photodiode displays and so on. Among them, gallium nitride, as one of the semiconductor with large bandgap, has attracted people's attention and focused on its research. At present, gallium nitride as an excellent optical material has become a semiconductor with important application value. Gallium nitride films with different dislocation densities are grown on c-plane sapphire substrates. The main material is to change the dislocation density. The influence of dislocation density on the luminescence of materials was studied. In this paper, two methods of photoluminescence and cathodoluminescence were used to study the epitaxial layer of gallium nitride. The effect of dislocation density on exciton intensity of gallium nitride layer is studied. Ga _ 3N layer is grown on c-plane sapphire substrate by metal-organic vapor deposition. Our study is explained by pulse luminescence spectroscopy. Expected conclusion: dislocation density will have an impact on the luminescence intensity of the material. According to the experimental results, we found that changing dislocation density can make the material have greater luminescence efficiency. The economical and fast method of controlling the dislocation of epitaxial layer of gallium nitride is obtained, so that we can make better semiconductor devices and optoelectronic devices.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN304
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 虞斌堂;光化學(xué)成像在砂刻裝飾工藝中的應(yīng)用[J];絲網(wǎng)印刷;1999年04期
本文編號:1452261
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1452261.html
最近更新
教材專著