多環(huán)境下硅通孔互連結(jié)構(gòu)可靠性技術(shù)研究
本文關(guān)鍵詞:多環(huán)境下硅通孔互連結(jié)構(gòu)可靠性技術(shù)研究 出處:《桂林電子科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 硅通孔 隨機振動 灰色關(guān)聯(lián) 熱-結(jié)構(gòu)耦合、溫-振耦合
【摘要】:硅通孔(Through Silicon Via,TSV)互連結(jié)構(gòu)的可靠性直接影響三維封裝器件的性能,對TSV互連結(jié)構(gòu)在各種環(huán)境下進行可靠性展開研究有著非常重要的意義。本文以采用TSV互連結(jié)構(gòu)的3D-TSV疊層芯片封裝器件為對象,應(yīng)用有限元數(shù)值仿真點的方法分析了TSV互連結(jié)構(gòu)在隨機振動、熱-結(jié)構(gòu)耦合及溫-振耦合等條件下的可靠性,并對隨機振動條件下TSV互連結(jié)構(gòu)進行了多因素多目標優(yōu)化設(shè)計。首先,使用ANSYS軟件建立了采用TSV互連結(jié)構(gòu)的3D-TSV疊層芯片封裝結(jié)構(gòu)有限元模型,分析在隨機振動條件下TSV互連結(jié)構(gòu)的應(yīng)力應(yīng)變響應(yīng)。研究結(jié)果表明:在隨機振動條件下,位于芯片最遠角點處的TSV互連結(jié)構(gòu)應(yīng)力應(yīng)變最大;TSV高度不僅僅影響TSV互連結(jié)構(gòu)的最大應(yīng)力應(yīng)變值,還影響TSV互連結(jié)構(gòu)應(yīng)力應(yīng)變的分布規(guī)律,在所選高度范圍內(nèi),75μm時TSV互連結(jié)構(gòu)的最大應(yīng)力值最小;微凸點材料為無鉛焊料SAC387時TSV互連結(jié)構(gòu)的隨機振動可靠性優(yōu)于微凸點材料為銅;在所選的四種焊料中,針對微凸點而言,有鉛焊料Sn63Pb37本身的隨機振動特性最好,針對整個TSV互連結(jié)構(gòu)體系而言,焊料為SAC387時TSV互連結(jié)構(gòu)的應(yīng)力應(yīng)變均為最小,隨機振動性能最佳。然后,正交試驗設(shè)計方差分析得到TSV高度對隨機振動條件下TSV互連結(jié)構(gòu)的等效應(yīng)力影響顯著,并且得到各個因素影響排序為TSV高度TSV直徑微凸點直徑微凸點高度;基于正交試驗與灰色關(guān)聯(lián)分析相結(jié)合方法的多因素多目標優(yōu)化設(shè)計得到最優(yōu)參數(shù)水平組合為:TSV高度為50μm,TSV直徑為40μm,微凸點高度為10μm,微凸點直徑為70μm;通過與原始模型以及正交試驗表格中各組合的隨機振動分析結(jié)果對比可知,最優(yōu)組合的四種優(yōu)化目標均得到了不同程度的優(yōu)化,因此,通過運用正交試驗和灰色關(guān)聯(lián)分析相結(jié)合方法實現(xiàn)了TSV互連結(jié)構(gòu)的多目標優(yōu)化。最后,對TSV互連結(jié)構(gòu)進行熱-結(jié)構(gòu)耦合分析和溫-振耦合分析,并對兩種條件下不同尺寸參數(shù)的TSV互連結(jié)構(gòu)可靠性進行分析。研究結(jié)果表明,在TSV互連結(jié)構(gòu)的實際工作和應(yīng)用過程中,想要獲得更小尺寸更高可靠性的TSV互連結(jié)構(gòu),必須要考察溫度效應(yīng)和尺寸效應(yīng)對TSV互連結(jié)構(gòu)熱-結(jié)構(gòu)耦合及溫-振耦合可靠性的影響。本文的研究成果為TSV互連技術(shù)的實際應(yīng)用和發(fā)展提供可靠性理論基礎(chǔ)和技術(shù)支持。
[Abstract]:The reliability of the through Silicon via TSVV interconnect structure has a direct impact on the performance of 3D packaging devices. It is of great significance to study the reliability of TSV interconnects in various environments. In this paper, 3D-TSV laminated chip packaging devices with TSV interconnection structure are taken as the object. The reliability of TSV interconnection structures under random vibration, thermal-structural coupling and temperature-vibration coupling is analyzed by means of finite element numerical simulation point method. And the multi-factor and multi-objective optimization design of TSV interconnection structure under random vibration is carried out. First of all. The finite element model of 3D-TSV laminated chip encapsulation structure using TSV interconnection structure is established by using ANSYS software. The stress-strain response of TSV interconnection structure under random vibration is analyzed. The results show that the maximum stress-strain of TSV interconnection structure lies at the farthest corner of the chip under random vibration condition. The height of TSV not only affects the maximum stress and strain value of TSV interconnection structure, but also affects the distribution of stress and strain of TSV interconnection structure in the selected height range. At 75 渭 m, the maximum stress of TSV interconnection structure is the minimum. The random vibration reliability of TSV interconnect is better than that of copper when the micro-convex spot material is lead-free solder SAC387. Among the four solders selected, the lead solder Sn63Pb37 has the best random vibration characteristics for micro-convex spots, and the whole TSV interconnection system. When the solder is SAC387, the stress and strain of TSV interconnect structure is minimum, and the random vibration performance is the best. The analysis of variance of orthogonal design shows that the TSV height has a significant effect on the equivalent stress of TSV interconnection structure under random vibration. The order of influence factors is TSV height, TSV diameter, TSV diameter, microconvex point height. Based on the combination of orthogonal test and grey correlation analysis, the optimal parameter level combination of multi-factor and multi-objective optimization is that the height of TSV is 50 渭 m and the diameter of TSV is 40 渭 m. The height of the microconvex point is 10 渭 m and the diameter of the microconvex point is 70 渭 m. By comparing with the results of random vibration analysis of each combination in the original model and the orthogonal test table, it can be seen that the four optimization objectives of the optimal combination are all optimized to varying degrees. The multi-objective optimization of TSV interconnection structure is realized by using orthogonal test and grey correlation analysis. Finally, thermo-structural coupling analysis and temperature-vibration coupling analysis of TSV interconnection structure are carried out. The reliability of TSV interconnection structure with different size parameters is analyzed under two conditions. The results show that in the practical work and application process of TSV interconnection structure. Want to obtain smaller size and higher reliability of the TSV interconnection structure. The influence of temperature effect and size effect on the thermo-structural coupling and thermo-vibration coupling reliability of TSV interconnection structures must be investigated. The research results in this paper provide a reliability theory for the practical application and development of TSV interconnection technology. Basic and technical support.
【學(xué)位授予單位】:桂林電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN405
【參考文獻】
相關(guān)期刊論文 前5條
1 韓瀟;丁漢;盛鑫軍;張波;;CSP封裝Sn-3.5Ag焊點的熱疲勞壽命預(yù)測[J];半導(dǎo)體學(xué)報;2006年09期
2 趙璋;童志義;;3D-TSV技術(shù)——延續(xù)摩爾定律的有效通途[J];電子工業(yè)專用設(shè)備;2011年03期
3 郎鵬;高志方;牛艷紅;;3D封裝與硅通孔(TSV)工藝技術(shù)[J];電子工藝技術(shù);2009年06期
4 李娜;余心宏;;無鉛焊料十溫區(qū)回流焊過程的仿真研究[J];電子工藝技術(shù);2012年01期
5 ZHONG ShunAn;WANG ShiWei;CHEN QianWen;DING YingTao;;Thermal reliability analysis and optimization of polymer insulating through-silicon-vias(TSVs) for 3D integration[J];Science China(Technological Sciences);2014年01期
相關(guān)碩士學(xué)位論文 前4條
1 王榮乾;軍用電子機柜隨機振動疲勞分析[D];北京交通大學(xué);2007年
2 王宏明;應(yīng)用于三維疊層封裝的硅通孔(TSV)建模及傳熱和加載分析[D];西安電子科技大學(xué);2012年
3 黃林娟;半導(dǎo)體器件和集成電路的電—熱—力特性的多物理場仿真研究[D];浙江大學(xué);2013年
4 李瑋;硅通孔界面應(yīng)力分析[D];北京工業(yè)大學(xué);2013年
,本文編號:1439776
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1439776.html