基于亞像素配準(zhǔn)的神經(jīng)網(wǎng)絡(luò)非均勻性校正
發(fā)布時間:2018-01-17 20:18
本文關(guān)鍵詞:基于亞像素配準(zhǔn)的神經(jīng)網(wǎng)絡(luò)非均勻性校正 出處:《激光與紅外》2017年08期 論文類型:期刊論文
更多相關(guān)文章: 非均勻性 亞像素配準(zhǔn) 動量項BP神經(jīng)網(wǎng)絡(luò) 收斂速度
【摘要】:紅外焦平面存在嚴(yán)重影響成像質(zhì)量的非均勻性,本文使用基于亞像素配準(zhǔn)算法和動量項BP神經(jīng)網(wǎng)絡(luò)的非均勻性校正算法進(jìn)行校正。對短波紅外相機(jī)成像過程中,由于相機(jī)視軸與成像目標(biāo)位置的相對偏移(由相機(jī)安裝平臺晃動所致),使用基于矩陣乘法的亞像素配準(zhǔn)算法進(jìn)行配準(zhǔn);為了加速算法收斂,采用兩點法來對校正系數(shù)進(jìn)行初始化;為了改善BP神經(jīng)網(wǎng)絡(luò)容易陷入局部最優(yōu)值,采用增加動量項的方法來改善校正效果。通過仿真實驗可以看出提出的算法消除了傳統(tǒng)神經(jīng)網(wǎng)絡(luò)校正方法存在的鬼影和邊緣模糊等問題,獲得了良好的校正效果,同時提高了算法的收斂速度。為短波紅外圖像數(shù)據(jù)后期處理提供了良好的基礎(chǔ)。
[Abstract]:The infrared focal plane has a serious influence on the imaging quality of non-uniformity. In this paper, the nonuniformity correction algorithm based on sub-pixel registration algorithm and momentum term BP neural network is used to correct the imaging process of short-wave infrared camera. Due to the relative deviation between the camera axis of view and the position of the imaging target (caused by the sloshing of the camera installation platform), the sub-pixel registration algorithm based on matrix multiplication is used for registration; In order to accelerate the convergence of the algorithm, the two-point method is used to initialize the correction coefficient. In order to improve the BP neural network, it is easy to fall into the local optimal value. The method of increasing momentum term is used to improve the correction effect. The simulation results show that the proposed algorithm eliminates the problems of ghost and edge blur in the traditional neural network correction method. A good correction effect is obtained, and the convergence rate of the algorithm is improved, which provides a good basis for the post-processing of short-wave infrared image data.
【作者單位】: 中國科學(xué)院上海技術(shù)物理研究所;
【基金】:全球變化與海汽相互作用專項(No.GASI-03-03-01-01)資助
【分類號】:TN215;TP391.41
【正文快照】: i引言紅外焦平面探測器在航空航天遙感、消防及工業(yè)測溫等領(lǐng)域得到廣泛的應(yīng)用,然而由于受材料、工藝水平等因素限制紅外焦平面存在嚴(yán)重影響成像質(zhì)量的非均R,
本文編號:1437811
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1437811.html
最近更新
教材專著