高Q微腔光電振蕩器的延時效應(yīng)及溫度性能研究
發(fā)布時間:2018-01-15 22:07
本文關(guān)鍵詞:高Q微腔光電振蕩器的延時效應(yīng)及溫度性能研究 出處:《中北大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 光電振蕩器 光學(xué)微環(huán)腔 延時 相位噪聲 頻率穩(wěn)定性
【摘要】:隨著微波技術(shù)的進(jìn)一步發(fā)展,高頻微波成為研究和發(fā)展的一個主要趨勢,它在通信、雷達(dá)、制導(dǎo)等方面都有著非常重要的地位。而作為高頻微波源典型應(yīng)用的光電振蕩器能夠產(chǎn)生高頻率(從幾GHz到幾百GHz)、高Q值(1010)、低相位噪聲的高品質(zhì)信號,而且具有可調(diào)諧性和光、電兩種輸出,因而成為高頻微波技術(shù)研究的新熱點(diǎn)。受到國內(nèi)外研究者的廣泛關(guān)注。本文首先對基于高Q微環(huán)腔光電振蕩器的結(jié)構(gòu)進(jìn)行了介紹,并對該基于高Q微環(huán)腔光電振蕩器系統(tǒng)的核心單元——光纖環(huán)形諧振腔進(jìn)行了理論研究。隨后對該光電振蕩器的起振條件(閾值條件和相位條件)、頻譜和相位噪聲等方面進(jìn)行了具體的分析。最后,通過分析溫度對光纖及濾波器等光電振蕩器環(huán)路中的溫度敏感單元的作用,詳細(xì)地介紹了溫度對光電振蕩器的調(diào)節(jié)機(jī)理。通過對光電振蕩器系統(tǒng)的理論研究和詳細(xì)分析,本文首先對傳統(tǒng)長光纖系統(tǒng)的延時效應(yīng)進(jìn)行了研究,并且用高Q光纖微環(huán)腔代替長光纖作為振蕩回路中的延時儲能單元,研究了系統(tǒng)的延時效應(yīng),并且得出光纖環(huán)腔Q值與OEO系統(tǒng)Q值,系統(tǒng)延時的關(guān)系,使用光纖環(huán)腔作為光電振蕩器的延時器件,在取得相同延時作用的條件下,對系統(tǒng)體積進(jìn)行了很好的優(yōu)化,從而也就為光電振蕩器的實(shí)用化和集成化研究提供了一種新的可行性方案。通過頻譜分析儀上相位噪聲測試模塊測試中心頻率2.01 GHz處相位噪聲為-57.7dBc/Hz@10kHz。為了改善相位噪聲,我們加入鎖頻電路模塊優(yōu)化系統(tǒng)結(jié)構(gòu),通過反饋調(diào)節(jié)鎖定激光器的輸出光頻率,使光子在通過諧振腔時始終處于諧振狀態(tài),在鎖頻電路作用前后OEO系統(tǒng)中心頻率為10.4G Hz處相位噪聲分別為-71.34 dBc@10kHz和-91.35dBc@10kHz。相位噪聲降低約20 dBc。最后,對該系統(tǒng)的溫度效應(yīng)進(jìn)行了比較詳細(xì)的分析。通過加入溫控模塊,將光纖環(huán)腔置于溫控系統(tǒng)中,在30℃條件下OEO在20分鐘內(nèi)該高Q微環(huán)腔OEO的頻率偏移為-0.35 ppm。具有比較好的短期頻率穩(wěn)定性。同時,通過調(diào)節(jié)溫度從20-50℃,中心頻率偏移2.24 MHz。說明通過調(diào)節(jié)溫度該系統(tǒng)具有一定的頻率可調(diào)諧性。
[Abstract]:With the further development of microwave technology, HF microwave has become a major trend of research and development in communications, radar. As a typical application of high frequency microwave source, optoelectronic oscillator can produce high frequency (from several GHz to hundreds of GHz, high Q value 1010). High quality signal with low phase noise and tunable and output of light and electricity. As a result, it has become a new hot spot in the research of high frequency microwave technology, and has received extensive attention from researchers at home and abroad. Firstly, the structure of high Q microring resonator based on photovoltaic oscillator is introduced in this paper. The optical fiber ring resonator, which is the core unit of the high Q microring resonator system, is studied theoretically. Then, the starting conditions (threshold condition and phase condition) of the oscillator are studied. The frequency spectrum and phase noise are analyzed in detail. Finally, the effect of temperature on the temperature sensitive unit in the optoelectronic oscillator loop such as optical fiber and filter is analyzed. Through the theoretical research and detailed analysis of the photoelectric oscillator system, the delay effect of the traditional long fiber optic system is studied in this paper. The high Q fiber microring cavity is used instead of the long fiber as the delay energy storage unit in the oscillation loop. The delay effect of the system is studied, and the relationship between the Q value of the optical fiber ring cavity and the Q value of the OEO system and the system delay is obtained. The optical fiber ring cavity is used as the delay device of the optoelectronic oscillator. Under the condition of the same delay effect, the system volume is optimized well. This provides a new feasible scheme for the practical and integrated study of optoelectronic oscillators. Testing Center Frequency 2.01 using Phase noise Test Module on Spectrum Analyzer. The phase noise at GHz is -57.7dBc / Hz@ 10kHz. In order to improve the phase noise. We add the frequency locking circuit module to optimize the system structure and adjust the output optical frequency of the locked laser by feedback so that the photon is always in the resonant state when it passes through the resonator. The phase noise of OEO system is -71.34 at 10.4G Hz before and after the operation of frequency locking circuit. DBc@10kHz and -91.35dBc @ 10kHz. the phase noise is reduced by about 20dBc. finally. The temperature effect of the system is analyzed in detail. By adding the temperature control module, the optical fiber ring cavity is placed in the temperature control system. At 30 鈩,
本文編號:1430248
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1430248.html
最近更新
教材專著