膠體PbSe量子點太陽能熒光聚集器的仿真研究
發(fā)布時間:2018-01-12 08:06
本文關(guān)鍵詞:膠體PbSe量子點太陽能熒光聚集器的仿真研究 出處:《吉林大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: PbSe量子點 太陽能熒光聚集器 數(shù)學(xué)模型 仿真研究
【摘要】:太陽能熒光聚集器(LSC)是一種聚光型太陽能光伏器件,它可以通過等效聚光的方法,以相對簡單的結(jié)構(gòu)代替大面積造價昂貴的太陽能電池,達(dá)到降低太陽能光伏發(fā)電成本的目的。過去,研究人員經(jīng)常選用有機熒光材料作為LSC的熒光材料,但它們的光譜吸收范圍小,自吸收嚴(yán)重,穩(wěn)定性差,熒光壽命短,這很大程度上限制了LSC效率的提高。半導(dǎo)體量子點作為近年來備受關(guān)注的熱點材料,相比于傳統(tǒng)有機熒光材料,具有更優(yōu)異的光學(xué)特性,如光譜可調(diào)諧,熒光量子效率高,自吸收弱,穩(wěn)定性好,熒光壽命長等。因此,為了進(jìn)一步提高LSC的性價比,本文將2.8nm的膠體PbSe量子點引入到LSC的應(yīng)用中。 本文首先分析了半導(dǎo)體量子點的激子能級結(jié)構(gòu),采用有限深勢阱模型與有效質(zhì)量近似理論相結(jié)合的方法,建立了半導(dǎo)體量子點能級結(jié)構(gòu)的計算公式,并對不同尺寸的膠體PbSe量子點的禁帶寬度進(jìn)行了理論計算,發(fā)現(xiàn)理論計算值與實驗測定值相差不多。然后采用Yu的合成方法合成了不同尺寸的膠體PbSe量子點,,對其進(jìn)行了TEM、XRD分析,觀測到其近似于球形的外形和體巖鹽對稱的晶體結(jié)構(gòu),測量了其吸收光譜和PL光譜,發(fā)現(xiàn)其第一激子吸收峰和發(fā)射峰是尺寸依賴的,并測量得到其熒光量子效率在80%以上。接下來本文詳細(xì)分析了LSC的工作原理,包括光子在LSC內(nèi)的轉(zhuǎn)換過程,熒光在LSC內(nèi)部的傳輸模式,自吸收和再激發(fā)原理,熒光的傳輸損耗原理等,并根據(jù)其工作原理建立了LSC的數(shù)學(xué)模型。根據(jù)該數(shù)學(xué)模型,用C++編程語言在MicrosoftVisual C++6.0編譯器上編寫了太陽能熒光聚集器的仿真軟件。最后,本文將2.8nm的膠體PbSe量子點應(yīng)用到LSC中,根據(jù)實驗測量及查閱資料獲得的數(shù)據(jù)來設(shè)定仿真參數(shù),對膠體PbSe量子點太陽能熒光聚集器進(jìn)行了仿真研究。仿真研究了LSC的尺寸對LSC光電轉(zhuǎn)換效率、幾何聚光比和收益參數(shù)的影響,得到LSC尺寸的最優(yōu)值。在最優(yōu)尺寸下仿真研究了量子點溶液濃度對LSC光電轉(zhuǎn)換效率的影響,得到量子點溶液濃度的最優(yōu)值。并最終得到了性能優(yōu)良的LSC,其邊長為150cm×200cm,夾層厚度為1mm,量子點溶液濃度為2.5×10-5mol/L,光電轉(zhuǎn)換效率為3.25%,幾何聚光比為61.224,收益參數(shù)為12.436,說明膠體PbSe量子點可以明顯提高LSC的性價比,是用來制作LSC的理想熒光材料。
[Abstract]:Solar fluorescence aggregator (LSC) is a kind of concentrated solar photovoltaic device. It can replace the large area expensive solar cells with a relatively simple structure by equivalent concentrating method. In the past, researchers often choose organic fluorescent materials as LSC fluorescent materials, but their spectral absorption range is small, self-absorption is serious, and stability is poor. The short lifetime of fluorescence greatly limits the efficiency of LSC. Semiconductor quantum dots (QDs), as hot materials in recent years, have better optical properties than traditional organic fluorescent materials. For example, the spectrum is tunable, the fluorescence quantum efficiency is high, the self-absorption is weak, the stability is good, the fluorescence lifetime is long and so on. Therefore, in order to further improve the performance and price ratio of LSC. In this paper, a 2.8 nm colloidal PbSe quantum dot is introduced into the application of LSC. In this paper, the exciton energy level structure of semiconductor quantum dots is analyzed, and the calculation formula of semiconductor quantum dot energy level structure is established by combining the finite deep potential well model with the effective mass approximation theory. The band gap of colloidal PbSe quantum dots with different sizes was calculated theoretically. It was found that the theoretical values were not different from the experimental ones. Then the colloidal PbSe quantum dots of different sizes were synthesized by Yu synthesis method. The spherical shape and the salt symmetry crystal structure are observed. The absorption and PL spectra are measured and the first exciton absorption and emission peaks are found to be dimensionally dependent. The fluorescence quantum efficiency is more than 80%. Then, the principle of LSC is analyzed in detail, including the conversion process of photons in LSC and the transmission mode of fluorescence in LSC. According to the principle of self-absorption and re-excitation, the principle of transmission loss of fluorescence, the mathematical model of LSC is established. The simulation software of solar fluorescence aggregator is programmed with C programming language on MicrosoftVisual C 6.0 compiler. Finally. In this paper, a 2.8nm colloidal PbSe quantum dot is applied to the LSC, and the simulation parameters are set according to the data obtained from the experimental measurement and the reference data. The solar fluorescent aggregator of colloidal PbSe quantum dots is simulated and studied. The effects of the size of LSC on the photoelectric conversion efficiency, geometric concentration ratio and yield parameters of LSC are simulated. The optimal value of LSC size is obtained and the effect of the concentration of quantum dot solution on the photoelectric conversion efficiency of LSC is simulated under the optimal size. The optimum concentration of quantum dot solution was obtained, and the LSCs with good performance were obtained, the side length was 150cm 脳 200cm and the thickness of interlayer was 1mm. The quantum dot solution concentration is 2.5 脳 10 ~ (-5) mol / L, the photoelectric conversion efficiency is 3.25 and the geometric concentration ratio is 61.224, the yield parameter is 12.436. The results show that colloidal PbSe quantum dots can improve the performance / price ratio of LSC and are ideal fluorescent materials for LSC.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TM615;O471.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 胡文佳;張宇;Jian Xu;王靜康;;PbSe量子點在太陽能熒光聚集器中的應(yīng)用研究[J];光譜學(xué)與光譜分析;2013年02期
2 苑金生;;太陽能光伏器件與建筑一體化[J];上海建材;2008年01期
3 耿新華;南開大學(xué)穩(wěn)步推進(jìn)非晶硅太陽電池產(chǎn)業(yè)化[J];天津科技;2001年03期
4 趙玉文;太陽電池新進(jìn)展[J];物理;2004年02期
本文編號:1413383
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1413383.html
最近更新
教材專著