基于光子晶體的可見光合波器的設(shè)計與研究
本文關(guān)鍵詞:基于光子晶體的可見光合波器的設(shè)計與研究 出處:《深圳大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 光子晶體 可見光 合波器 點(diǎn)缺陷 線缺陷
【摘要】:激光顯示是繼黑白顯示、彩色顯示、數(shù)字高清顯示之后的第四代顯示技術(shù)。使用三基色激光光源,需要合波器,使得不同波長的三基色光經(jīng)過合波器從同一端口輸出。光子晶體可見光合波器具有結(jié)構(gòu)緊湊,集成度高的特點(diǎn),有利于激光光源的微型化和低成本。在激光顯示、激光成像、激光照明等領(lǐng)域有著誘人的應(yīng)用前景,具有重要的科學(xué)研究意義和應(yīng)用價值。本文提出了兩種基于光子晶體的可見光合波器,實(shí)現(xiàn)了三基色的高效傳輸。第一種是基于光子晶體線缺陷的可見光合波器。選取激光顯示中常用的三個波長:488nm、532nm、635nm為例。利用光子晶體耦合模理論,通過理論分析,計算出不同光波對應(yīng)的耦合長度,并采用兩個光子晶體定向耦合器級聯(lián)的方式實(shí)現(xiàn)可見光波段三個波長的合波。但在設(shè)計該器件過程中,如果采用傳統(tǒng)的線缺陷結(jié)構(gòu),觀察635nm光波對應(yīng)的色散曲線,發(fā)現(xiàn)該波長只支持一個模式,不能實(shí)現(xiàn)在兩個光子晶體波導(dǎo)中能量的完全轉(zhuǎn)換。本文通過改變光子晶體線缺陷的寬度來改變其色散曲線,從而使635nm的光波能支持兩個模式,為設(shè)計光子晶體合波器提供了新的思路。本文采用時域有限差分法對該光子晶體合波器進(jìn)行模擬研究,并優(yōu)化了該器件的結(jié)構(gòu)參數(shù)。模擬結(jié)果為:每一個波長的透射率都能達(dá)到90%以上,并且器件尺寸為微米量級。第二種為光子晶體線缺陷和點(diǎn)缺陷相結(jié)合的可見光合波器。該合波器主要是利用光子晶體不同點(diǎn)缺陷對不同光波的光子局域來實(shí)現(xiàn)的,點(diǎn)缺陷在光子晶體中形成微腔,可以局域相應(yīng)波長的光波。通過改變點(diǎn)缺陷的半徑大小、形狀和介電常數(shù)就可以改變微腔所對應(yīng)局域模式的諧振頻率。本文主要采用線缺陷與點(diǎn)缺陷相結(jié)合,并設(shè)置了一個和該微腔結(jié)構(gòu)相同的反射微腔,從而提高其透射效率。采用時域有限差分法對該光子晶體合波器進(jìn)行模擬研究。模擬結(jié)果為透射效率能到86%以上,器件尺寸為微米量級。
[Abstract]:Laser display is a 4th generation display technology after black and white display, color display and digital high-definition display. The three primary color light of different wavelengths is output from the same port through the wave combiner. The photonic crystal visible photosynthetic wave apparatus has the characteristics of compact structure and high integration. It is beneficial to the miniaturization and low cost of laser light source. It has attractive application prospect in the fields of laser display, laser imaging, laser illumination and so on. This paper presents two kinds of visible photosynthetic wave apparatus based on photonic crystal. The first is a visible photosynthetic wave based on photonic crystal line defect. The three wavelengths commonly used in laser display are: 488nm ~ 532 nm. The coupling lengths of different light waves are calculated by using the coupling mode theory of photonic crystals and theoretical analysis at 635nm. Two photonic crystal directional couplers are used to realize the combination of three wavelengths of visible light. However, in the process of designing the device, the traditional linear defect structure is adopted. The dispersion curve corresponding to the 635nm light wave is observed and it is found that the wavelength supports only one mode. It is impossible to realize the complete energy conversion in two photonic crystal waveguides. In this paper, the dispersion curve is changed by changing the width of the photonic crystal line defects, so that the 635nm optical wave can support two modes. It provides a new idea for the design of photonic crystal synthesizer. In this paper, we use the finite-difference time-domain method to simulate the photonic crystal synthesizer. The structural parameters of the device are optimized. The simulation results show that the transmittance of each wavelength can reach more than 90%. And the device size is in the order of micron. The second is the visible photosynthetic wave apparatus which combines the photonic crystal line defect and the point defect. This kind of wave synthesizer is mainly realized by using the photonic localization of different light wave caused by the different point defect of photonic crystal. . Point defects form microcavities in photonic crystals, allowing localized wavelengths of light to be localized by changing the radius of point defects. The shape and dielectric constant can change the resonant frequency of the local mode of the microcavity. In this paper, the linear defect and the point defect are combined, and a reflection microcavity with the same structure is set up. In order to improve the transmission efficiency, the transmission efficiency of the photonic crystal synthesizer is simulated by using the finite-difference time-domain method. The simulation results show that the transmission efficiency is more than 86% and the device size is of the order of micron.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN25
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔乃迪;梁靜秋;梁中翥;周健偉;寇婕婷;王維彪;;光子晶體及二維光子晶體波導(dǎo)[J];光機(jī)電信息;2009年10期
2 黃翊東;毛曉宇;張超;曹磊;崔開宇;張巍;彭江得;;Photonic crystal waveguides and their applications Invited Paper[J];Chinese Optics Letters;2008年10期
3 柳春郁,余有龍,高應(yīng)俊;單模與多模光纖耦合器的光束合波[J];光學(xué)學(xué)報;2005年06期
4 柳春郁,余有龍,柳耀文,崔志華,高應(yīng)俊;熔錐型光纖耦合器的制作[J];黑龍江大學(xué)自然科學(xué)學(xué)報;2004年01期
5 鄧開發(fā),是度芳,蔣美萍,李承芳;光子晶體研究進(jìn)展[J];量子電子學(xué)報;2004年05期
6 楊春云;徐旭明;于天寶;;光子晶體波導(dǎo)耦合的波分復(fù)用研究[J];量子光學(xué)學(xué)報;2010年01期
7 葉濤;徐旭明;;高效異質(zhì)結(jié)構(gòu)四波長波分復(fù)用器的設(shè)計與優(yōu)化[J];物理學(xué)報;2010年09期
8 徐少輝,丁訓(xùn)民,資劍,侯曉遠(yuǎn);電子體系與光子體系[J];物理;2002年09期
9 屈偉平;;激光顯示技術(shù)掀起色彩革命[J];有線電視技術(shù);2010年02期
10 吳華君;吳云峰;趙新才;;基于非球面透鏡的光分束器設(shè)計[J];應(yīng)用光學(xué);2011年06期
,本文編號:1409464
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1409464.html