倒裝疊層金釘頭凸點(diǎn)鍵合成型仿真及可靠性研究
本文關(guān)鍵詞:倒裝疊層金釘頭凸點(diǎn)鍵合成型仿真及可靠性研究 出處:《桂林電子科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 疊層金釘頭凸點(diǎn) 鍵合成型 熱循環(huán)加載實(shí)驗(yàn) 可靠性分析
【摘要】:倒裝芯片技術(shù)是芯片互連主要方式之一。本文通過(guò)有限元仿真以及實(shí)驗(yàn)驗(yàn)證的方法,對(duì)倒裝芯片疊層金釘頭凸點(diǎn)鍵合成型及其應(yīng)力應(yīng)變進(jìn)行了分析:倒裝疊層第一層金釘頭凸點(diǎn)應(yīng)力應(yīng)變水平分布較高的區(qū)域集中在以焊盤(pán)幾何中心的同心圓周邊區(qū)域,金釘頭凸點(diǎn)將優(yōu)先在這個(gè)區(qū)域內(nèi)與焊盤(pán)形成鍵合;倒裝芯片疊層金釘頭凸點(diǎn)高度隨著鍵合壓力、鍵合功率以及鍵合時(shí)間的增大而減少,第一層金釘頭凸點(diǎn)直徑和第二層金釘頭凸點(diǎn)直徑隨著鍵合壓力、鍵合功率以及鍵合時(shí)間的增大而增大;倒裝疊層金釘頭鍵合過(guò)程中,劈刀對(duì)第一層金釘頭凸點(diǎn)關(guān)鍵尺寸的影響少于對(duì)第二層金釘頭凸點(diǎn)的影響;進(jìn)行第二層金釘頭凸點(diǎn)的鍵合時(shí),為了保證第一層金釘頭凸點(diǎn)不會(huì)因?yàn)榈诙䦟咏疳旑^凸點(diǎn)的鍵合出現(xiàn)失效,需要保證鍵合壓力以及鍵合功率在一定的范圍之內(nèi);谡辉囼(yàn)設(shè)計(jì),設(shè)計(jì)了鍵合工藝參數(shù)不同水平組合倒裝疊層金釘頭熱循環(huán)加載仿真凸點(diǎn)應(yīng)力應(yīng)變分析,結(jié)果表明:倒裝疊層金釘頭凸點(diǎn)熱循環(huán)應(yīng)力應(yīng)變分布是不均勻的,應(yīng)力應(yīng)變最大值出現(xiàn)在凸點(diǎn)與焊盤(pán)鍵合處;倒裝疊層金釘頭凸點(diǎn)熱循環(huán)加載條件下關(guān)鍵時(shí)刻點(diǎn)最大應(yīng)力應(yīng)變值極差方和方差分析表明:熱循環(huán)加載條件下,鍵合參數(shù)對(duì)倒裝疊層金釘頭凸點(diǎn)應(yīng)力應(yīng)變影響由大到小排序?yàn)?鍵合壓力鍵合功率鍵合時(shí)間;其中鍵合壓力對(duì)倒裝疊層金釘頭凸點(diǎn)應(yīng)力應(yīng)變影響為顯著,其它兩個(gè)鍵合工藝參數(shù)不顯著;倒裝疊層金釘頭凸點(diǎn)最優(yōu)鍵合工藝參數(shù)水平組合為:鍵合壓力為64gf、鍵合功率為0.15w以及鍵合時(shí)間為34ms。對(duì)熱壓超聲焊機(jī)制作的倒裝疊層金釘頭凸點(diǎn)樣件進(jìn)行了100天共計(jì)2400小時(shí)的熱循環(huán)加載可靠性實(shí)驗(yàn),金釘頭凸點(diǎn)失效數(shù)據(jù)極差和方差分析表明:熱循環(huán)加載條件下,各鍵合工藝參數(shù)對(duì)倒裝疊層金釘頭凸點(diǎn)可靠性影響按大小排序?yàn)?鍵合壓力鍵合功率鍵合時(shí)間;熱循環(huán)加載條件下,對(duì)倒裝疊層金釘頭凸點(diǎn)可靠性影響顯著的鍵合工藝參數(shù)是鍵合壓力,其它兩個(gè)鍵合工藝參數(shù)為不顯著;倒裝疊層金釘頭凸點(diǎn)最優(yōu)鍵合工藝參數(shù)水平組合為:鍵合壓力64gf、鍵合功率0.15w以及鍵合時(shí)間34ms;利用Weibull分布對(duì)倒裝疊層金釘頭凸點(diǎn)熱循環(huán)加載失效數(shù)據(jù)分析表明:倒裝疊層金釘頭凸點(diǎn)熱循環(huán)加載失效Weibull分布的尺度參數(shù)?和形狀參數(shù)?分別為515.1522和5.032403;其期望壽命(平均壽命)E(t)為474.3985小時(shí),中位壽命0.5t為478.967小時(shí),特征壽命0.368t為515.1186小時(shí)。
[Abstract]:Flip chip technology is one of the main methods of chip interconnection. In this paper, the synthetic type and stress strain of the convex dot bond of the stacked gold nail head on the flip chip are analyzed. The area with high horizontal distribution of stress and strain at the convex point of the first layer gold nail head in the inverted layer is concentrated in the concentric circumference of the center of the weld pad geometry. The protruding spot of the gold nail head will preferentially bond with the pad in this area; With the increase of bonding pressure, bonding power and bonding time, the height of the convex point of the first layer gold nail head and the second layer gold nail head convex point diameter decrease with the increase of bonding pressure, the diameter of the first layer gold nail head convex point and the second layer gold nail head convex point diameter increase with the bonding pressure. The bonding power and the bonding time increase; During the bonding process, the effect of the splitter on the key size of the protruding point of the first layer gold nail head is less than that on the second layer gold nail head convex point. In order to ensure that the first layer gold nail head convex point bond does not occur because of the second layer gold nail head convex point bonding failure. It is necessary to ensure that the bonding pressure and bonding power are within a certain range. Based on the orthogonal experimental design, the stress and strain analysis of hot cycle loading simulation of different horizontal combination of stacked gold nail head is designed. The results show that the distribution of stress and strain is not uniform and the maximum value of stress and strain appears at the joint between the convex spot and the pad. The maximum stress-strain value of critical point under thermal cyclic loading condition and variance analysis show that: under the condition of thermal cyclic loading. The influence of bonding parameters on the stress and strain of the convex point of the inverted stacked gold nail head is arranged from large to small as follows: bonding pressure bonding power bonding time; The bonding pressure has a significant effect on the stress and strain of the convex point of the inverted stacked gold nail head, while the other two bonding process parameters are not significant. The optimal bonding process parameters are as follows: bonding pressure is 64gf. The bonding power is 0.15w and the bonding time is 34ms.The reliability experiment of the hot pressing ultrasonic welding machine is carried out for 100 days and 2400 hours. The range difference and variance analysis show that under the condition of thermal cyclic loading, the effect of each bonding process parameter on the reliability of the inverted stacked gold nail convex point is ranked as follows: bonding pressure bonding power bonding time; Under the condition of thermal cycling loading, the bonding pressure is the bonding pressure, but the other two process parameters are not significant. The optimal bonding process parameters are as follows: bonding pressure 64gf, bonding power 0.15w and bonding time 34ms; The Weibull distribution is used to analyze the failure data of thermal cyclic loading on the convex point of the inverted stacked gold nail head. It is shown that the scale parameters of the Weibull distribution of the thermal cyclic loading failure of the inverted stacked gold nail head are obtained. And shape parameters? 515.1522 and 5.032403, respectively; The average life expectancy (average life span) is 474.3985 hours, the median life span is 478.967 hours, and the characteristic life span is 0.368t is 515.1186 hours.
【學(xué)位授予單位】:桂林電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN405
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 李福泉,王春青,張曉東;倒裝芯片凸點(diǎn)制作方法[J];電子工藝技術(shù);2003年02期
2 何中偉;IC芯片釘頭金凸點(diǎn)的制作技術(shù)研究[J];電子工藝技術(shù);2005年01期
3 田艷紅;孔令超;王春青;;芯片互連超聲鍵合技術(shù)連接機(jī)制探討[J];電子工藝技術(shù);2007年01期
4 郭暉;郭大琪;;多金球凸點(diǎn)倒裝片技術(shù)[J];電子與封裝;2007年06期
5 韓雷;;微電子封裝超聲鍵合機(jī)理與技術(shù)中的科學(xué)問(wèn)題[J];中國(guó)基礎(chǔ)科學(xué);2013年03期
相關(guān)博士學(xué)位論文 前5條
1 褚衛(wèi)華;模塊級(jí)電子產(chǎn)品可靠性強(qiáng)化試驗(yàn)方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2003年
2 王福亮;熱超聲倒裝鍵合界面運(yùn)動(dòng)與界面性能的生成規(guī)律研究[D];中南大學(xué);2007年
3 李軍輝;超聲鍵合界面微結(jié)構(gòu)生成機(jī)理與規(guī)律研究[D];中南大學(xué);2008年
4 何俊;基于界面變形及微觀接觸的熱超聲鍵合機(jī)理研究[D];上海交通大學(xué);2008年
5 劉曰濤;面向電子封裝的釘頭金凸點(diǎn)制備關(guān)鍵技術(shù)及其實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前2條
1 陸軍;MCM中倒裝焊接技術(shù)研究[D];南京理工大學(xué);2006年
2 李曉雨;三參數(shù)Weibull分布參數(shù)估計(jì)方法研究[D];北京交通大學(xué);2012年
,本文編號(hào):1403606
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1403606.html