基于ZnO量子點的異質結構可控制備和光學性質研究
發(fā)布時間:2017-12-28 21:12
本文關鍵詞:基于ZnO量子點的異質結構可控制備和光學性質研究 出處:《南昌航空大學》2016年碩士論文 論文類型:學位論文
更多相關文章: CdS/ZnO異質結構 ZnS/ZnO異質結構 CuS花狀結構 光學特性 光催化 電化學
【摘要】:半導體異質結構納米材料在光探測、光催化和太陽能電池等方面具有廣泛的、潛在的應用。本文主要在兩種不同的納米帶上生長ZnO量子點,構成異質結構,并研究了異質結構的光學特性。另外,CuS是一種重要的II-VI族半導體材料,在儲能器件等方面有潛在應用,本文采用水熱發(fā)成功合成了CuS微米花結構,采用電化學方法研究了基于CuS超級電容的充放電性能,為其在超級電容器方面的應用奠定基礎。主要研究內容和結論如下:(1)CdS/ZnO異質結構及其光學性質研究。首先采用熱蒸發(fā)法制備基底CdS納米帶,接著以CdS納米帶為基底,采用熱分解乙酸鋅溶液的方法成功制備了CdS/ZnO一維異質結構。通過乙酸鋅濃度、熱分解溫度以及反應時間等參數的優(yōu)化,有效地控制在納米帶表面生長ZnO電子點的尺寸和分布。通過XRD,FESEM和TEM等測試,探索得到了影響ZnO量子點尺寸和分布的最佳生長條件。室溫PL光譜測試結果表明:CdS/ZnO異質結構在508.95nm和699.69nm處有兩個發(fā)光帶,分別對應于本征發(fā)射和缺陷發(fā)射。與CdS納米帶的光致發(fā)光譜相比,發(fā)生了明顯的紅移現象,且本征發(fā)射峰明顯增強,而缺陷發(fā)射峰在逐漸減弱。拉曼光譜測試表明,CdS/ZnO異質結構兩個頻移峰中心位于299.11cm-1和601.97cm-1,與CdS納米帶相比,其峰位向低波數方向發(fā)生了移動,即發(fā)生了紅移現象。(2)CdS/ZnO異質結構光催化性能研究。通過降解10mg/L的羅丹明B溶液研究了CdS/ZnO異質結構的光催化性能。當在紫外可見光下照射35min時,CdS/ZnO異質結構一定濃度的羅丹明B溶液的兩次降解率分別為97.62%和92.18%,與CdS納米帶對相同濃度的羅丹明B溶液的降解率90.94%和82.01%相比,光催化效率明顯提高,且光腐蝕現象降低。這說明Zn O量子點擴展了納米帶的光響應范圍,并且通過半導體復合,CdS激發(fā)產生的光生電子能有效地轉移到ZnO的導帶,從而實現光生電子空穴對的有效分離,提高了光催化活性。(3)ZnS/ZnO異質結構及其光學性質研究。采用相同方法,在ZnS納米帶表面成功生長ZnO量子點,構成ZnS/ZnO異質結構。借助于XRD,EDS,FESEM及TEM測試技術對樣品的形貌和結構進行表征分析。研究了ZnS/ZnO異質結構的光學性能。研究結果表明:采用乙酸鋅熱分解的方法,可以有效地實現在不同半導體納米帶上生長ZnO量子點,控制量子點的分布和尺寸。(4)利用水熱法,以硝酸銅和硫脲為原材料,成功合成了CuS花狀結構。通過FESEM觀察其形貌,分析了其生長機制。發(fā)現CuS花狀結構是由納米片聚集而形成,粒徑約為2um,分布均勻。通過循環(huán)伏安法,循環(huán)穩(wěn)定性測試以及交流阻抗譜的測試研究了CuS電極的電化學性能。當掃描速率為5mv/s時,CuS電極的比電容為170.948F/g,相比于文獻報道的基于CuS的電容器,本文具有更高的比電容和循環(huán)穩(wěn)定性。
[Abstract]:Semiconductor heterostructure nanomaterials have a wide range of potential applications in light detection, photocatalysis and solar cells. In this paper, ZnO quantum dots are grown on two different nanoscale bands to form a heterostructure, and the optical properties of the heterostructures are studied. In addition, CuS is a kind of important II-VI semiconductor materials have potential applications in energy storage devices, the water heat synthesis of CuS micron flower structure, studied the charge discharge performance of CuS based on super capacitor by electrochemical method, lay the foundation for its application in the super capacitor. The main contents and conclusions are as follows: (1) the study of CdS/ZnO heterostructure and its optical properties. First, the substrate CdS nanobelts were prepared by thermal evaporation. Then, the one-dimensional heterostructure of CdS/ZnO was successfully prepared by thermal decomposition of zinc acetate solution on the basis of CdS nanobelts. By optimizing the concentration of zinc acetate, thermal decomposition temperature and reaction time, the size and distribution of ZnO electron points on the surface of nanoscale have been effectively controlled. The optimum growth conditions for the size and distribution of ZnO quantum dots were investigated by XRD, FESEM and TEM tests. The room temperature PL spectra test results show that the CdS/ZnO heterostructures have two luminescent bands at 508.95nm and 699.69nm, which correspond to the intrinsic emission and the defect emission respectively. With the CdS nanobelts photoluminescence spectra compared to red shift phenomenon, and then the peaks increased significantly, but the defect emission peak gradually weakened. Raman spectra show that CdS/ZnO heterostructure two frequency peak centered at 299.11cm-1 and 601.97cm-1, compared with CdS nanobelts, shifted the peak wave number direction, namely red shift phenomenon. (2) study on the photocatalytic properties of CdS/ZnO heterostructure. The photocatalytic properties of CdS/ZnO heterostructures were studied by Luo Danming B solution degrading 10mg/L. When in the ultraviolet and visible light irradiation 35min, the degradation rate of B solution two times Luo Danming CdS/ZnO heterostructure concentrations were 97.62% and 92.18%, Luo Danming on the same concentration of B solution and CdS nanobelts degradation rate of 90.94% and 82.01% compared to the photocatalytic efficiency is improved obviously, and reduce the corrosion phenomenon of light. This indicates that Zn O quantum dots extend the optical response range of nanobelts, and the photogenerated electrons generated by CdS excitation can be effectively transferred to ZnO conduction band through semiconductor recombination, so as to effectively separate the photoelectron hole pairs and enhance the photocatalytic activity. (3) the study of ZnS/ZnO heterostructure and its optical properties. Using the same method, the ZnO quantum dots were successfully grown on the surface of the ZnS nanoscale, and the ZnS/ZnO heterostructure was formed. The morphology and structure of the samples were characterized by XRD, EDS, FESEM and TEM. The optical properties of ZnS/ZnO heterostructures are studied. The results show that the thermal decomposition of zinc acetate can effectively achieve the growth of ZnO quantum dots on different semiconductor nanobelts and control the distribution and size of quantum dots. (4) by hydrothermal method, using copper nitrate and thiourea as raw materials, synthesis of CuS flower like structure. The morphology was observed by FESEM and its growth mechanism was analyzed. It is found that the flower structure of CuS is formed by the aggregation of nanoscale, and the particle size is about 2um, and the distribution is uniform. The electrochemical performance of the CuS electrode was studied by cyclic voltammetry, cyclic stability test and AC impedance spectroscopy. When the scanning rate is 5mv/s, the specific capacitance of CuS electrode is 170.948F/g. Compared with the CuS based capacitor reported in the literature, this paper has higher specific capacitance and cycle stability.
【學位授予單位】:南昌航空大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:O471.1;TB383.1
【相似文獻】
相關期刊論文 前10條
1 張立綱;超晶格異質結構中的輸運性質[J];物理學進展;1988年03期
2 范希武;與Ⅱ—Ⅵ族有關的異質結的場致發(fā)光[J];國外信息顯示;1973年Z1期
3 王慶學;異質結構的應變和應力分布模型研究[J];物理學報;2005年08期
4 單淑萍;蔡麗清;;異質結領域發(fā)展近況[J];科教文匯(上旬刊);2009年12期
5 張振飛;劉海瑞;張華;劉旭光;賈虎生;許并社;;ZnO/Ag球形異質結復合材料的制備及其吸光性能研究[J];人工晶體學報;2013年12期
6 王華,于軍,董小敏,王耘波,周文利,趙建洪,周東祥;Au/PZT/BIT/p-Si異質結的制備與性能研究[J];物理學報;2001年05期
7 錢學e,
本文編號:1347425
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1347425.html