天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

Improving the Accuracy of Short-term Forecasting of Electric

發(fā)布時(shí)間:2021-07-05 16:53
  目前,國內(nèi)外研發(fā)了許多種負(fù)荷預(yù)測模型和軟件系統(tǒng)。多數(shù)模型的預(yù)測精度能夠滿足電力系統(tǒng)調(diào)度與用戶需求,但在某些情況下,短期負(fù)荷預(yù)測結(jié)果并不總是很理想。因此,結(jié)合當(dāng)?shù)貧庀髼l件和自然光照的預(yù)測模型迫切需要發(fā)展。主要研究內(nèi)容如下:(1)基于支持向量機(jī)和粒子群的算法,一個(gè)用于地區(qū)調(diào)度的短期電力系統(tǒng)負(fù)荷預(yù)測模型被建立。該方法將當(dāng)?shù)刈匀还庾鳛橛绊戭A(yù)測精度的一個(gè)重要因素,因此可以提高預(yù)測精確度。(2)粒子群算法被用于優(yōu)化支持向量回歸模型的參數(shù),其中空氣溫度和自然光照考慮作為影響因素。(3)通過對神經(jīng)模糊網(wǎng)絡(luò)和支持矢量機(jī)的預(yù)測結(jié)果比較顯示,支持向量回歸模型有最好的逼近性質(zhì),考慮電力系統(tǒng)負(fù)荷、空氣溫度和自然光照因素。課題的理論意義在于開發(fā)一種應(yīng)用粒子群優(yōu)化算法優(yōu)化支持向量機(jī)的參數(shù)的預(yù)測模型。該方法建立了電力消費(fèi)、空氣溫度和自然光照之間非線性關(guān)系以提高模型的預(yù)測精度。實(shí)際意義在于開發(fā)的模型可用來預(yù)測區(qū)域調(diào)度辦事處分支機(jī)構(gòu)的能源消費(fèi),批發(fā)發(fā)電公司和領(lǐng)土產(chǎn)生的公司、區(qū)域網(wǎng)公司,能源銷售公司,以及在分派辦事處的個(gè)別公司成員的批發(fā)或零售電力市場和權(quán)力。短期預(yù)測的計(jì)算機(jī)程序也被在MatLab環(huán)境下開發(fā)應(yīng)用開發(fā)。 

【文章來源】:蘭州交通大學(xué)甘肅省

【文章頁數(shù)】:67 頁

【學(xué)位級別】:碩士

【文章目錄】:
Abstract
摘要
1. Review and analysis of modern methods and mathematical models to predict electricity consumption
    1.1 Classification of short-term load forecasting methods
    1.2 Statistical methods of forecasting
        1.2.1 Methods for regression
        1.2.2 Time series methods
        1.2.3 Methods based on wavelet transform of time series
    1.3 Methods of artificial intelligence
        1.3.1 Methods based on neural network models
        1.3.2 Methods based on fuzzy logic
        1.3.3 Support vector method
    1.4 Evolutionary algorithms
    1.5 Requirements for short-term forecasting of electricity consumption
    1.6 Main problems of short-term forecasting of electricity consumption
        1.6.1 Accuracy of the input - output relationship hypothesis
        1.6.2 Prediction of abnormal days
        1.6.3 Inaccurate weather forecast data
    1.7 Review of current literature on the problem of short-term power consumption forecasting
        1.7.1 Models of neural networks
        1.7.2 Models of neuro-fuzzy networks
        1.7.3 Model of wavelet transform
        1.7.4 Regression models
    1.8 Conclusions
2. Time series analysis of electricity consumption and its determinants
    2.1 Characteristics of the electrical load diagrams of the power system
    2.2 Time series of power consumption and influencing factors
    2.3 Seasonal and meteorological factors affecting power consumption
    2.4 Temperature and light: the analysis of their impact on power consumption in the control room operating area
    2.5 Random disturbances
    2.6 Conclusions
3. Modelling short term future energy consumption based on neural networks and evolutionary algorithms
    3.1 Short-term load forecasting using artificial neural network
    3.2 Short-term load forecasting using artificial neural networks and particle swarm optimization algorithm
    3.3 Short-term load forecasting using artificial neural networks and particle swarm optimization algorithm
        3.3.1 Data analysis and pre-processing
        3.3.2 The number of layers, neurons and transfer functions
        3.3.3 Training of built neural networks
        3.3.4 Architecture of the ANN for the operating zone
        3.3.5 The choice of input variables
        3.3.6 Building the structure of neural network
        3.3.7 Selection of data for training, testing and validation
        3.3.8 Simulation results
    3.4 Training the ANN on the basis of self-organization
        3.4.1 Dataset for the study
        3.4.2 Training of self-organizing maps
        3.4.3 The results of clustering and prediction
        3.4.4 Performance criteria
        3.4.5 Simulation results
    3.5 Conclusions
4. Models of future energy consumption based on neural fuzzy network and support vector method
    4.1 Predicting power consumption using adaptive neural fuzzy network
        4.1.1 The architecture of neuro-fuzzy model
        4.1.2 Hybrid algorithm for training neural networks
        4.1.3 Simulation result
    4.2 Energy consumption forecasting using support vector
        4.2.1 Simulation results
    4.3 Forecasting of power consumption based on the support vector method and particle swarm algorithm
        4.3.1 Load forecasting steps and processes
        4.3.2 A set of analysis parameters
        4.3.3 Simulation results
    4.4 Conclusions
Summarize
Acknowledgement
References
Research achievement during working for the degree


【參考文獻(xiàn)】:
期刊論文
[1]基于神經(jīng)網(wǎng)絡(luò)和模糊理論的短期負(fù)荷預(yù)測[J]. 趙宇紅,唐耀庚,張韻輝.  高電壓技術(shù). 2006(05)



本文編號:3266457

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/3266457.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f5ba1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲视频一级二级三级| 久久精品欧美一区二区三不卡| 国产丝袜美女诱惑一区二区| 九九视频通过这里有精品| 国产精品激情对白一区二区| 国产日韩欧美综合视频| 亚洲av熟女一区二区三区蜜桃| 国产成人午夜av一区二区| 国产专区亚洲专区久久| 日本深夜福利在线播放| 国产精品视频第一第二区| 久久人人爽人人爽大片av| 亚洲女同一区二区另类| 国产av熟女一区二区三区蜜桃| 日韩欧美国产三级在线观看| 老熟妇2久久国内精品| 午夜精品久久久免费视频| 亚洲伦理中文字幕在线观看| 又色又爽又无遮挡的视频| 有坂深雪中文字幕亚洲中文| 中文字幕精品人妻一区| 香蕉久久夜色精品国产尤物 | 国产精品欧美激情在线| 亚洲中文字幕三区四区| 91天堂免费在线观看| 亚洲男人天堂网在线视频| 欧美日韩国产精品自在自线| 草草夜色精品国产噜噜竹菊| 日韩精品中文字幕亚洲| 亚洲超碰成人天堂涩涩| 精品精品国产欧美在线| 日韩精品一区二区亚洲| 久久精品视频就在久久| 亚洲精品av少妇在线观看| 日韩欧美国产高清在线| 不卡在线播放一区二区三区| 欧美日韩国产午夜福利| 五月婷婷亚洲综合一区| 99精品国产一区二区青青 | 不卡视频免费一区二区三区| 久久婷婷综合色拍亚洲|