并網(wǎng)式光伏配電線的距離保護(hù)
發(fā)布時(shí)間:2021-05-26 11:53
隨著新能源發(fā)電的規(guī)模不斷擴(kuò)大,集中式大規(guī)模新能源并網(wǎng)消納的問題開始變得突出。分布式新能源發(fā)電以其與負(fù)荷聯(lián)系緊密,對(duì)電網(wǎng)沖擊小,在近年來受到了廣泛的關(guān)注。分布式光伏發(fā)電相對(duì)風(fēng)電等技術(shù)來說有更好的應(yīng)用場(chǎng)景,但其對(duì)配網(wǎng)潮流的改變以及逆變器控制策略,也會(huì)給繼電保護(hù)等傳統(tǒng)領(lǐng)域帶來新的問題。距離保護(hù)和過流保護(hù)是配電網(wǎng)通用保護(hù),由光伏電源提供的短路電流受到并網(wǎng)逆變器的限制,與常規(guī)電源提供的電流疊加,對(duì)距離保護(hù)的測(cè)量和動(dòng)作會(huì)產(chǎn)生影響。研究含光伏電站的配電網(wǎng)保護(hù)的特性和整定方法也是亟需解決的問題。本文論述了將光伏電站(PVPP)連接到電網(wǎng)的電力線的保護(hù);它分析了并網(wǎng)光伏系統(tǒng)(GCPV)對(duì)常規(guī)距離保護(hù)的影響。由于通常存在故障轉(zhuǎn)換電阻,這會(huì)誤導(dǎo)距離保護(hù)的操作。特別是對(duì)于并網(wǎng)光伏系統(tǒng)的配電網(wǎng)絡(luò),測(cè)得的阻抗將更加不準(zhǔn)確并且導(dǎo)致保護(hù)誤動(dòng)。電網(wǎng)側(cè)的過電流保護(hù)和PVPP側(cè)的距離保護(hù)之間的特定協(xié)調(diào)用于消除這種影響。這種協(xié)調(diào)需要延遲距離保護(hù)并保持逆變器與電網(wǎng)連接,這是通過故障穿越(FRT)功能和故障狀態(tài)下的逆變器控制實(shí)現(xiàn)的。使用在距離PV側(cè)10km處的BC相間故障來研究仿真,其中在0.8s處具有2Ω故障電阻。首先,在沒有...
【文章來源】:華北電力大學(xué)(北京)北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:55 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Background and Introduction
1.1 Background and Introduction
1.2 Research Objectives
1.3 Plan
1.4 Tools and Simulation
1.4.1 Model and simulate electrical power systems
1.4.2 Key Features
1.4.3 Simscape Platform Capabilities
1.4.4 Simulation and Analysis
1.4.5 Simulation Methods
1.4.6 Power Transmission
1.4.7 Transformers
1.4.8 Power Converters
1.4.9 Specialized Technology
1.5 Thesis Layout
Chapter 2 Literature Review
2.1 General Control Targets of Photovoltaic Systems
2.2 More Power Electronics and Advanced Controls
2.3 Control of Three-Phase Photovoltaic Systems
2.3.1 Advanced Control of Three-Phase PV Systems under Grid Faults
2.3.2 Unity Power Factor Control Strategy
2.4 Fault Ride-Through Strategies
2.4.1 DC Braking Chopper (BC)
2.4.2 Avoiding of the MPPT Operation (AV-MPPT)
2.4.3 Dumping the Energy in Energy Storage Systems (DEESS)
2.4.4 AC Side Strategies:
2.5 Power System Protection: Introduction
2.5.1 Fundamentals of Protection Practice
2.5.2 Protective Relays
2.5.3 Numerical Relay Structure
2.6 Distance Relays
2.6.1 Zones of protection
2.6.2 Effect of fault Resistance on relay coverage
2.6.3 Mho Relay Model Algorithm
2.6.4 Other Impedance Planes
2.6.5 Under Reach of Distance Relay
2.7 The impact of the PV System on the protection of the distributed network
2.7.1 The impact on the overcurrent protection
2.7.2 The Impact on Distance Protection
Chapter 3 Methodology and Simulation
3.1 BUILDING DISTANCE RELAY MODEL
3.1.1 Fault Detection Block
3.1.2 Impedance Measurement Block
3.1.3 Zone Protection Coordination
3.1.4 Building Shape Mho Characteristics
3.1.5 Fault Detection Block
3.2 Fault Resistance and Its Amplification
3.2.1 The Proposed Coordination Method
3.2.2 Proposed Grid Tied System
3.2.3 Study Cases
3.3 The Proposed Coordination Method
Chapter 4 Results and Discussion
4.1 Introduction
4.2 The implemented Grid-tie PV system
4.3 The Proposed Coordination Method Result
4.3.1 Case 1
4.3.2 Case 2
Chapter 5 Conclusion
5.1 Introduction
5.2 Conclusion
5.3 Research Contribution
5.4 Achieved Research Objectives
5.5 Future Work
References
ACKNOWLEDGEMENT
本文編號(hào):3206334
【文章來源】:華北電力大學(xué)(北京)北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:55 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Background and Introduction
1.1 Background and Introduction
1.2 Research Objectives
1.3 Plan
1.4 Tools and Simulation
1.4.1 Model and simulate electrical power systems
1.4.2 Key Features
1.4.3 Simscape Platform Capabilities
1.4.4 Simulation and Analysis
1.4.5 Simulation Methods
1.4.6 Power Transmission
1.4.7 Transformers
1.4.8 Power Converters
1.4.9 Specialized Technology
1.5 Thesis Layout
Chapter 2 Literature Review
2.1 General Control Targets of Photovoltaic Systems
2.2 More Power Electronics and Advanced Controls
2.3 Control of Three-Phase Photovoltaic Systems
2.3.1 Advanced Control of Three-Phase PV Systems under Grid Faults
2.3.2 Unity Power Factor Control Strategy
2.4 Fault Ride-Through Strategies
2.4.1 DC Braking Chopper (BC)
2.4.2 Avoiding of the MPPT Operation (AV-MPPT)
2.4.3 Dumping the Energy in Energy Storage Systems (DEESS)
2.4.4 AC Side Strategies:
2.5 Power System Protection: Introduction
2.5.1 Fundamentals of Protection Practice
2.5.2 Protective Relays
2.5.3 Numerical Relay Structure
2.6 Distance Relays
2.6.1 Zones of protection
2.6.2 Effect of fault Resistance on relay coverage
2.6.3 Mho Relay Model Algorithm
2.6.4 Other Impedance Planes
2.6.5 Under Reach of Distance Relay
2.7 The impact of the PV System on the protection of the distributed network
2.7.1 The impact on the overcurrent protection
2.7.2 The Impact on Distance Protection
Chapter 3 Methodology and Simulation
3.1 BUILDING DISTANCE RELAY MODEL
3.1.1 Fault Detection Block
3.1.2 Impedance Measurement Block
3.1.3 Zone Protection Coordination
3.1.4 Building Shape Mho Characteristics
3.1.5 Fault Detection Block
3.2 Fault Resistance and Its Amplification
3.2.1 The Proposed Coordination Method
3.2.2 Proposed Grid Tied System
3.2.3 Study Cases
3.3 The Proposed Coordination Method
Chapter 4 Results and Discussion
4.1 Introduction
4.2 The implemented Grid-tie PV system
4.3 The Proposed Coordination Method Result
4.3.1 Case 1
4.3.2 Case 2
Chapter 5 Conclusion
5.1 Introduction
5.2 Conclusion
5.3 Research Contribution
5.4 Achieved Research Objectives
5.5 Future Work
References
ACKNOWLEDGEMENT
本文編號(hào):3206334
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/3206334.html
最近更新
教材專著