固體氧化物燃料電池納米復(fù)合電極有效性質(zhì)理論及模擬計算
[Abstract]:The demand of high efficiency and pollution-free utilization of fossil fuels such as coal, oil and natural gas in the world has made it more and more important to use the clean and high-efficiency power generation device _ solid oxide fuel cell (SOFC) that can directly use hydrocarbon fuel to generate electricity. The porous electrode is a very important component in the solid oxide fuel cell, and the performance of the porous electrode plays a key role in the improvement of the performance of the solid oxide fuel cell. As an emerging porous electrode, the nano-composite electrode is of great concern due to the advantages of high mechanical matching and low polarization loss. In spite of many researches on the experimental aspects of the nano-composite electrode, the theoretical research is relatively poor, which influences the understanding of the internal reaction mechanism of the nano-composite electrode and the optimization design of the microstructure and the material. It is very important to establish and develop the effective property theory of the nano-composite electrode in a scientific and reasonable way, and then to establish the multi-physical field model to compare and optimize the relative performance of the nano-composite electrode. In this paper, based on the actual physical image of the nano-composite electrode, on the basis of the effective property theory of the traditional electrode, the theoretical derivation and the multi-physical field simulation are used. The solid oxide fuel cell with nano-composite electrode structure was studied and the performance of the solid oxide fuel cell was studied. The main contents include the following parts: in chap. I, we first introduce that development of the fuel cell In this paper, the paper briefly introduces the theory of multi-physical field simulation, and briefly introduces the control equation that needs to be used in the modeling process, and then briefly introduces the development background, the manufacturing process, the present situation and the excellent of the new porous electrode of the nano-composite electrode. In the end, we have made a brief introduction to the simulation techniques and methods that are common in the theoretical simulation process In the second chapter, based on the particularity of the geometrical structure of the nano-composite electrode, the assumption that the porous electrode is made from the equivalent ball of homogeneous conduction is introduced. On the basis of the theory of effective conductivity of the nano-composite electrode, the conductivity of the binary nano-composite electrode is given. The expression is analyzed, and meanwhile, the physical image of the two parallel ion transmission paths is formed on the basis of the ion transmission of the core framework in the ternary nano composite electrode and the ion transmission between the nano small particles, and the equivalent ion power of the three-way nano electrode is provided. Expression, and follow the relevant experimental data In the third chapter, the conductivity of the spherical shell in the second conductivity formula is modified by the dimension theory of the percolation threshold of the finite thickness, and some specific examples of the nano-composite electrode are given by the modified theory. The interpretation of the phenomenon is also discussed, and the number of layers of the spherical shell is further discussed. The results of the conductivity theory are in good agreement with the experimental data of the change of conductivity caused by different Ni components, different temperatures and different electrode structures. The theory is based on the optimization of the nano-composite electrode. The paper lays the foundation for the design. The fourth chapter has developed the theory of the electrochemical and effective properties of the nano-composite electrode and the theory of the effective property of the gas transmission. The analytical expression of the effective three-phase line and the diameter of the effective air hole is given, and compared with the experimental data, it is verified that The accuracy of the effect property theory, we have further established the multi-physical field model of the three-way nano-electrode, and the micro-structure parameter and the electrode group distribution ratio of the ternary nano-electrode are compared. A series of discussions and optimization are carried out. The fifth chapter is based on the theory of the effective properties of the nano-composite electrodes that have been verified in the foregoing, and the corresponding solid oxides of different structure electrodes are established in the process of coupling electron transport, ion transport, electrochemical reaction, gas transmission and the like. The multi-physical field model of the fuel cell, the I-V curve given by the multi-physical field model is in good agreement with the experiment, and it is verified that I The accuracy of the theory of effective property is the comparison of the related properties of different structure electrodes, such as the traditional electrode, the single-phase impregnated nano-electrode, the two-phase impregnated nano-electrode, and the like, so that the porous electrode with different structure The advantages and disadvantages of this paper are further understood.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM911.4
【共引文獻】
相關(guān)期刊論文 前10條
1 李貴茂;王恩剛;張林;左小偉;赫冀成;;形變原位Cu-Ag復(fù)合材料的研究進展[J];材料導(dǎo)報;2010年05期
2 劉靜,潘頤,張向武;Sn-Pb合金填充聚合物導(dǎo)電復(fù)合材料的PTC效應(yīng)[J];復(fù)合材料學(xué)報;2002年06期
3 徐任信;王鈞;魯學(xué)林;盧艷華;;短切碳纖維導(dǎo)電復(fù)合材料滲流和PTC行為的唯象分析[J];復(fù)合材料學(xué)報;2008年04期
4 鄭昕;劉俊成;白佳海;樊震坤;;石墨/陶瓷復(fù)合導(dǎo)電材料的制備及性能[J];復(fù)合材料學(xué)報;2009年04期
5 馬婕;王成國;于美杰;王啟芬;張敏;;PAN基碳化纖維的電性能及應(yīng)用[J];功能材料;2010年03期
6 楊華明;胡岳華;張慧慧;杜春芳;;Sb-SnO_2/BaSO_4導(dǎo)電粉末的制備與表征(英文)[J];硅酸鹽學(xué)報;2006年07期
7 任衍倫;劉京雷;顏磊;張莉;徐宏;;HP40合金在H2_O/H_2和空氣中氧化行為的研究[J];化工技術(shù)與開發(fā);2013年09期
8 羅凌虹;邵由俊;吳也凡;石紀(jì)軍;程亮;黃祖志;;固體氧化物燃料電池陰極材料LSCF納米纖維的靜電紡絲法制備[J];硅酸鹽學(xué)報;2013年09期
9 Julia Ott;Benjamin V銉lker;Yixiang Gan;Robert M.Mc Meeking;Marc Kamlah;;A micromechanical model for efective conductivity in granular electrode structures[J];Acta Mechanica Sinica;2013年05期
10 徐穎強;段辰宸;王雷雷;;微管固體氧化物燃料電池的熱應(yīng)力分析[J];電源技術(shù);2013年08期
相關(guān)會議論文 前1條
1 弭光寶;李培杰;;金屬/聚合物傳導(dǎo)復(fù)合材料界面層特征分析[A];第十五屆全國復(fù)合材料學(xué)術(shù)會議論文集(下冊)[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 陳茹;超高分子量聚乙烯基導(dǎo)電復(fù)合材料的電/熱性能研究[D];大連理工大學(xué);2011年
2 王楊勇;聚苯胺納米纖維的合成與應(yīng)用[D];西安交通大學(xué);2007年
3 周衛(wèi)斌;三維多晶復(fù)合材料顯微結(jié)構(gòu)模擬與性能分析[D];天津大學(xué);2010年
4 李微微;“球—棒”狀短碳纖維復(fù)合增強體設(shè)計及其環(huán)氧樹脂基復(fù)合材料性能研究[D];上海交通大學(xué);2011年
5 張雷;纖維相增強Cu-Ag合金的顯微組織及力學(xué)和電學(xué)性能[D];浙江大學(xué);2005年
6 王可;復(fù)合型導(dǎo)電高分子材料PTC/NTC效應(yīng)的研究[D];吉林大學(xué);2006年
7 李茁實;聚氯乙烯(PVC)實體與泡沫導(dǎo)電復(fù)合材料電性能的研究[D];吉林大學(xué);2006年
8 陶國良;高導(dǎo)熱先進復(fù)合材料設(shè)計制備及應(yīng)用技術(shù)研究[D];南京工業(yè)大學(xué);2006年
9 張義邴;連續(xù)逾滲區(qū)域MgB_2+MgO復(fù)相超導(dǎo)體的合成與電輸運特性研究[D];上海大學(xué);2007年
10 李繼新;聚乙烯(PE)導(dǎo)電泡沫復(fù)合材料電性能的研究[D];吉林大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 劉小麗;陶瓷散熱片用銅漿的制備[D];昆明理工大學(xué);2010年
2 劉生麗;導(dǎo)電高分子復(fù)合材料及其功能性轉(zhuǎn)變逾滲模型的研究[D];蘭州理工大學(xué);2011年
3 陳孟奇;碳納米管填充PC復(fù)合材料結(jié)構(gòu)與性能研究[D];浙江工業(yè)大學(xué);2010年
4 王歡歡;導(dǎo)電聚合物/細菌纖維素納米復(fù)合材料的制備及性能研究[D];南京理工大學(xué);2012年
5 劉庚揚;K分樹上滲流的滲流臨界指數(shù)[D];首都師范大學(xué);2002年
6 孫海珠;聚乙烯/聚并苯復(fù)合物PTC/NTC效應(yīng)及輻射交聯(lián)對其影響的研究[D];東北師范大學(xué);2003年
7 翁文桂;天然石墨的納米分散及其與尼龍6的納米復(fù)合研究[D];華僑大學(xué);2003年
8 謝長瓊;熱拉伸對PET/PE/CB復(fù)合導(dǎo)電體系形態(tài)與性能的影響[D];四川大學(xué);2003年
9 周麗春;聚乙烯/納米二硫化鉬功能復(fù)合材料的制備與性能研究[D];華僑大學(xué);2005年
10 林孟平;N990炭黑的改性以及CB/高密度聚乙烯PTC復(fù)合材料的研究[D];福州大學(xué);2006年
,本文編號:2499609
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2499609.html