基于灰色關(guān)聯(lián)分析和最小二乘支持向量機(jī)的光伏功率預(yù)測算法的研究
[Abstract]:With the increasing severity of the global energy crisis and environmental pollution, the development and utilization of new and renewable energy has become the main method to solve the energy problem in the world, and photovoltaic power generation system has been developed rapidly. However, due to the influence of meteorological factors, the power generation power of photovoltaic grid-connected power generation system is intermittent and fluctuating, in order to reduce its impact on the power grid and ensure the stability of the power grid. It is necessary to predict the power generation power of photovoltaic system accurately. On the basis of reading a large number of domestic and foreign literature, this paper studies the power generation power prediction of photovoltaic grid-connected from two different aspects. By analyzing the related factors and data mining technology that affect the power of photovoltaic grid-connected power generation, the data sequences with similar meteorological characteristics to the predicted period are selected from a large number of data, and the grey relational analysis theory is used to predict the power of photovoltaic power generation. The main influencing factors of irradiance, temperature and humidity are selected as the input variables of the least square support vector machine prediction model, and the output power of photovoltaic system is predicted 24 hours in advance. The advantages and disadvantages of grey relational analysis method and least square support vector machine method are deeply analyzed, and the characteristics of photovoltaic power generation system are combined with the characteristics of photovoltaic power generation system. The prediction methods of parallel grey correlation least square support vector machine and series grey correlation least square support vector machine are proposed. In this paper, through the photovoltaic grid-connected power generation monitoring system of Tianjin University, the relevant data of photovoltaic grid-connected power generation are obtained, and four prediction models are established by season to predict sunny, cloudy, rainy and haze days, respectively. The experimental results show that the prediction accuracy of serial and parallel grey correlation least squares support vector machine prediction method is higher than that of single grey correlation analysis method and least square support vector machine method. Among them, the output value of series grey correlation least square support vector machine model is the closest to the actual value of the output power of photovoltaic system.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP18;TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉蘭;葛鵬江;;基于相似日和徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的光伏陣列輸出功率預(yù)測[J];電力自動(dòng)化設(shè)備;2013年01期
2 單聯(lián)宏;;基于改進(jìn)灰色斜率關(guān)聯(lián)度的評價(jià)研究[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2012年22期
3 傅美平;馬紅偉;毛建容;;基于相似日和最小二乘支持向量機(jī)的光伏發(fā)電短期預(yù)測[J];電力系統(tǒng)保護(hù)與控制;2012年16期
4 姜僑娜;陳中;;BP-馬爾科夫組合預(yù)測方法在光伏發(fā)電量預(yù)測中的應(yīng)用[J];電力需求側(cè)管理;2011年06期
5 陳昌松;段善旭;蔡濤;代倩;;基于模糊識別的光伏發(fā)電短期預(yù)測系統(tǒng)[J];電工技術(shù)學(xué)報(bào);2011年07期
6 朱永強(qiáng);田軍;;最小二乘支持向量機(jī)在光伏功率預(yù)測中的應(yīng)用[J];電網(wǎng)技術(shù);2011年07期
7 丁明;徐寧舟;;基于馬爾可夫鏈的光伏發(fā)電系統(tǒng)輸出功率短期預(yù)測方法[J];電網(wǎng)技術(shù);2011年01期
8 張寧;許承權(quán);薛小鈴;鄭宗華;;基于最小二乘支持向量機(jī)的短期負(fù)荷預(yù)測模型[J];現(xiàn)代電子技術(shù);2010年18期
9 陳昌松;段善旭;殷進(jìn)軍;;基于神經(jīng)網(wǎng)絡(luò)的光伏陣列發(fā)電預(yù)測模型的設(shè)計(jì)[J];電工技術(shù)學(xué)報(bào);2009年09期
10 栗然;李廣敏;;基于支持向量機(jī)回歸的光伏發(fā)電出力預(yù)測[J];中國電力;2008年02期
相關(guān)博士學(xué)位論文 前2條
1 王飛;并網(wǎng)型光伏電站發(fā)電功率預(yù)測方法與系統(tǒng)[D];華北電力大學(xué);2013年
2 陳昌松;光伏微網(wǎng)的發(fā)電預(yù)測與能量管理技術(shù)研究[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前9條
1 趙欣宇;光伏發(fā)電系統(tǒng)功率預(yù)測的研究與實(shí)現(xiàn)[D];華北電力大學(xué);2012年
2 仇斌;小功率交流獨(dú)立光伏發(fā)電系統(tǒng)的研究[D];南京航空航天大學(xué);2012年
3 劉俊華;電力變壓器灰色關(guān)聯(lián)故障診斷模型的組合權(quán)重法[D];湖南大學(xué);2011年
4 田軍;分布式發(fā)電系統(tǒng)儲(chǔ)能優(yōu)化配置[D];華北電力大學(xué)(北京);2011年
5 蔣亞娟;光伏電池建模及其在光伏發(fā)電預(yù)測中的應(yīng)用[D];華中科技大學(xué);2011年
6 楊立成;基于最小二乘支持向量機(jī)的短期電力負(fù)荷預(yù)測方法研究[D];廣西大學(xué);2008年
7 孫玉剛;灰色關(guān)聯(lián)分析及其應(yīng)用的研究[D];南京航空航天大學(xué);2007年
8 曹明霞;灰色關(guān)聯(lián)分析模型及其應(yīng)用的研究[D];南京航空航天大學(xué);2007年
9 陳秋妹;數(shù)據(jù)光滑度改進(jìn)與灰色關(guān)聯(lián)研究[D];浙江工商大學(xué);2006年
,本文編號:2496640
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2496640.html