鉍系層狀鈣鈦礦鐵電體的磁性摻雜及多鐵性能研究
[Abstract]:The single-phase multi-iron material refers to a single-phase compound that exhibits both ferroelectric and magnetic properties at the same time. due to the combination of the ferroelectricity and the magnetic atomic layer in the single-phase multi-iron material, the magnetoelectric coupling quantum control can be realized, compared with those of the traditional magnetic materials or the ferroelectric materials, The single-phase multi-iron material with magnetoelectric coupling effect has great application potential in new information storage and magnetoelectric device. The core work of this thesis is to carry out the material modification of the ferroelectrics of the layered perovskite structure of three layers and four layers in the aspect of magnetic doping, and realize the coexistence of the ferroelectricity and the ferromagnetism at room temperature. The magnetic modification of the magnetic elements on the Bi4Ti3O12 (BTO) and the Bi5Ti3FeO15 (BTF) ceramic samples is found. The internal mechanism of the influence of the doping of the magnetic element on the BTO and the BTO material and the micro-physical mechanism of the mutual coupling and control of the ferroelectric and the ferromagnetic are also studied. It is divided into the following parts: (1) The changes of the temperature of the three-layer perovskite BTO doped with the magnetic element A or B and the temperature and magnetoelectric coupling effect of some samples at room temperature were studied. The preparation of the A-site doped Bi3.15-xNixNd0. 85Ti3O12, Bi3.15-xMnxNd0.85Ti3O12-1 and B-position-doped Bi4FexTi3-xO12-1, Bi3. 15Nd0.85MnxTi3-xO12, Bi3. 15Nd0.85CoxTi3-xO12-6 series of ceramic samples was prepared by conventional solid-phase reaction. The magnetic ions all enter the corresponding position in the perovskite-like layer. The magnetic hysteresis loop of the samples with the A-or B-position is linear and the room-temperature magnetism is higher. Weak, and the B-position doping of Fe and Co causes the magnetic hysteresis loop of the sample to present a typical ferromagnetic "S" type. In the Fe-doped x = 2 sample, it has been observed that a significant room temperature magnetoelectric coupling is observed In this paper, the internal mechanism of magnetic enhancement and the mechanism of magnetoelectric coupling are discussed in detail. In this paper, the intrinsic mechanism of magnetic enhancement of B-position magnetic co-doped three-layer perovskite Bi3. 15Nd0.85Ti3O12 (BNT) and the microstructure of the positive magnetic capacitance effect at room temperature are discussed. The method is prepared by the conventional solid-phase method (Bi3. 15Nd0.85) (Ti2FexCo1-x)012- The sample still has a three-layer perovskite structure. Compared with the sample in (1), the co-doping of Fe and Co increases the leakage of the sample, but greatly improves the sample. The results of the analysis of the valence state of the XPS indicate that the Fe 3 + and the Fe 2 in the sample In combination with the results of the valence state analysis, the intrinsic mechanism of the magnetic enhancement of the sample is discussed. The larger positive magnetic capacitance effect is also observed in the x = 0.5 sample. When the test frequency is 30 kHz, the magnetic capacitance is about 14.2%, and the magnetic capacitance effect is lower in the low frequency region. The doping of the magnetic element on the four-layer perovskite BTF was studied. The microstructure of three groups of ceramic samples of BTF, Bi5Ti3Fe0.5Ni0.5O15 (BTFN) and Bi4NdTi3Fe0.5Co0.5O15 (BNTFC) prepared by the traditional solid-phase method were studied. And all the samples form a four-layer perovskite structure, the dielectric constant has a strong dielectric dispersion, the sample ferroelectric performance is excellent, the B-position doping of the Ni, the A-position doping of the Nd and the B-position doping of the Co are improved compared with the non-doped BTF, and the sample is indeed improved. The magnetic enhancement is analyzed in terms of the difference of the ionic radius and the possible coupling in the sample at room temperature. The internal mechanism of B-position magnetic-doped Bi4NdTi3 (Fe1-xMx) O15 (M = Nk, Mn, Cr and Co) series of ceramic samples was studied in the system. The "f0.3" phenomenon was found and the intrinsic physical mechanism of the phenomenon was investigated. The magnetic elements Ni, Mn, Co and Cr-doped B were prepared by the modified solid-phase method. The NTF series of samples. Each series of samples forms a four-layer perovskite structure in which the Co and Cr-doped samples are single-phase structures, whereas in a sample doped with Ni and Mn A small amount of oxide is present. The hysteresis loop of each series of samples presents a typical ferromagnetic "S" type. In addition to the improvement of the magnetic performance of the sample, the remaining three series of samples, in the scope of this article, are all the same as in the "x=0.3" The magnetic properties of the product are the best. The intrinsic physics of this phenomenon is studied from the concentration ratio of the different magnetic ions and the position of the magnetic ion doping. The mechanism has been discussed. For the better Fe-doped and Co-doped "x=0.3" samples at room temperature, we have carried out the characterization of the magneto-electric coupling at room temperature. When the electric field of the test is small, the external magnetic field applied synchronously with the test electric field makes both samples show the effect of the magnetic capacitance at room temperature. When the test electric field is large, the external magnetic field applied synchronously with the test electric field increases the Ni-doped sample. The value of Pr and Ec. This theory The main innovation point of the paper is as follows:1. In the three-layer perovskite ferroelectric BTO, the best magnetic modification method in this paper is found. i. e., the b-bit magnetic element is co-doped. the b-bit fe and co-magnetic co-doping, when fe: co = l: l, the sample has the best room temperature polydoping and has been observed 2. In the four-layer perovskite ferroelectric BTF magnetic doping modification of this paper, the "x=0.3" phenomenon is found, that is, when Fe: M is 7:3 (M is the incorporated magnetic ion), the magnetic modification effect of the sample is the best; in addition, in the
"x = In the 0.3 " trunk> sample, you can also
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM221
【相似文獻】
相關(guān)期刊論文 前10條
1 屈紹波,楊祖培,高峰,田長生;弛豫鐵電體有序—無序轉(zhuǎn)變理論及進展[J];材料工程;2000年01期
2 徐文蘭,陸衛(wèi);多近鄰作用雙原子鏈和一維鐵電體晶格振動[J];紅外與毫米波學報;2000年05期
3 林比宏;回熱損失對鐵電體斯特林制冷循環(huán)性能影響[J];泉州師范學院學報;2000年06期
4 閆宗林,楊慶芬;馳豫鐵電體中極化微區(qū)動力學分析[J];石家莊鐵道學院學報;2001年02期
5 王春雷,薛旭艷,王淵旭,鐘維烈;低溫量子起伏對鐵電體介電行為的影響[J];哈爾濱理工大學學報;2002年06期
6 徐文蘭,李志峰,陸 衛(wèi);半導(dǎo)體和鐵電體集成體系晶格振動[J];紅外與毫米波學報;2002年S1期
7 李廣申,李克慶;鉛基復(fù)合鈣鈦礦型馳豫鐵電體介電理論研究進展[J];中國陶瓷工業(yè);2004年03期
8 張棟杰,姚熹;弛豫鐵電體結(jié)構(gòu)起伏與弛豫性研究[J];化學學報;2005年12期
9 張棟杰;弛豫鐵電體的弛豫性結(jié)構(gòu)研究[J];功能材料;2005年07期
10 易志國,李永祥,楊群保,王東,陸毅青,王英,殷慶瑞;鉍層狀共生鐵電體的研究進展[J];四川大學學報(自然科學版);2005年S1期
相關(guān)會議論文 前10條
1 楊文煌;李從周;;鐵電體鉬酸釓的布里淵散射[A];全國第三屆光散射學術(shù)會議論文摘要[C];1985年
2 隋巖;劉冬生;胡榮華;;基于取代苯甲酰脫氫樅酰胺的新型有機鐵電體[A];中國化學會第28屆學術(shù)年會第8分會場摘要集[C];2012年
3 Ni Yong;Chen Haitao;Shi Yuping;He Linghui;Su Aijia;;基于納米極化區(qū)翻轉(zhuǎn)動力學的弛豫鐵電體介電響應(yīng)模型[A];中國力學大會——2013論文摘要集[C];2013年
4 魯圣國;;馳豫型鐵電體材料的巨電卡效應(yīng)和電致伸縮性能[A];2013廣東材料發(fā)展論壇——戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展與新材料科技創(chuàng)新研討會論文摘要集[C];2013年
5 苗鴻臣;李法新;;新的鐵電體被翻轉(zhuǎn)譜壓電力顯微術(shù)發(fā)現(xiàn)了嗎?[A];北京力學會第20屆學術(shù)年會論文集[C];2014年
6 田曉寶;楊新華;操衛(wèi)忠;;不同應(yīng)變率條件下鐵電體180°疇結(jié)構(gòu)的力學行為模擬[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年
7 袁萬宗;;爆炸鐵電體電源[A];中國工程物理研究院科技年報(2000)[C];2000年
8 丁恩燕;陳洪斌;陸巍;陳志剛;劉天文;;鐵電體觸發(fā)開關(guān)實驗[A];中國工程物理研究院科技年報(2005)[C];2005年
9 方菲;桂紅;張孝文;;鋯鈦酸鉛鑭弛豫鐵電體中的玻璃態(tài)極化行為[A];94'全國結(jié)構(gòu)陶瓷、功能陶瓷、金屬/陶瓷封接學術(shù)會議論文集[C];1994年
10 葉萬能;盧朝靖;;Bi_4Ti_3O_(12)基鐵電體的結(jié)構(gòu)對稱性、疇結(jié)構(gòu)與疇壁可動性的透射電鏡研究[A];第十六屆全國晶體生長與材料學術(shù)會議論文集-06晶體結(jié)構(gòu)、缺陷和表征[C];2012年
相關(guān)博士學位論文 前5條
1 阿里(R A Ali);[D];山東大學;2005年
2 吳忠慶;復(fù)合鈣鈦礦型弛豫鐵電體介電性質(zhì)的理論研究[D];清華大學;2003年
3 謝琳;典型鋇基鐵電及弛豫鐵電體電子顯微學及第一性原理研究[D];清華大學;2012年
4 侯如鐘;鉍層狀化合物的結(jié)構(gòu)與鐵電、介電性能[D];浙江大學;2005年
5 陳曉琴;鉍系層狀鈣鈦礦鐵電體的磁性摻雜及多鐵性能研究[D];華中科技大學;2014年
相關(guān)碩士學位論文 前10條
1 顧洪良;不同裂紋電邊界條件對鐵電體非線性行為的影響[D];浙江大學;2013年
2 黃攀;鐵電體材料高介電常數(shù)測試技術(shù)研究[D];西安電子科技大學;2008年
3 侯建偉;電子型鐵電體的介電調(diào)諧性的研究[D];湘潭大學;2010年
4 胡曉琴;鈣鈦礦型鐵電體原子間相互作用勢的優(yōu)化及應(yīng)用[D];湘潭大學;2010年
5 王發(fā)棟;鐵電體性能測試系統(tǒng)優(yōu)化設(shè)計[D];西安科技大學;2014年
6 王賽;新型鐵電體的構(gòu)建與弛豫性研究[D];北京工業(yè)大學;2014年
7 袁敏;量子起伏對幾種先兆性鐵電體介電性質(zhì)的影響[D];山東大學;2005年
8 崔春玲;鐵電體疇結(jié)構(gòu)和極化反轉(zhuǎn)的計算機模擬[D];山東大學;2006年
9 丁恩燕;鐵電體觸發(fā)開關(guān)初步研究[D];中國工程物理研究院;2008年
10 陳育祥;BaTiO_3鐵電體輻射效應(yīng)的分子動力學模擬[D];湘潭大學;2009年
,本文編號:2496116
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2496116.html