天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電力論文 >

鉍系層狀鈣鈦礦鐵電體的磁性摻雜及多鐵性能研究

發(fā)布時間:2019-06-10 03:10
【摘要】:單相多鐵材料是指同時表現(xiàn)出鐵電性和磁性的單相化合物。由于單相多鐵材料中鐵電性和磁性原子層面的組合可實現(xiàn)磁電耦合量子調(diào)控,與那些傳統(tǒng)的磁性材料或鐵電材料相比,具有磁電耦合效應(yīng)的單相多鐵材料在新型信息存儲及磁電器件等方面有巨大的應(yīng)用潛力。本論文的核心工作是從磁性摻雜的角度,對三層及四層鉍系層狀鈣鈦礦結(jié)構(gòu)的鐵電體進行系統(tǒng)的材料改性工作,實現(xiàn)了樣品在室溫下鐵電性和鐵磁性的共存,發(fā)現(xiàn)磁性元素對Bi4Ti3O12(BTO)及Bi5Ti3FeO15(BTF)陶瓷樣品的磁改性規(guī)律,并初步探索了磁性元素摻雜對BTO及BTF材料多鐵性影響的內(nèi)在機制及鐵電性和鐵磁性互相耦合調(diào)控的微觀物理機制。具體分為下面幾個部分: (1)研究了磁性元素A位或B位摻雜三層鈣鈦礦BTO的室溫多鐵性隨摻雜含量的變化規(guī)律及部分樣品的室溫磁電耦合效應(yīng)。采用傳統(tǒng)固相反應(yīng)法制備A位摻雜Bi3.15-xNixNd0.85Ti3O12,Bi3.15-xMnxNd0.85Ti3O12-δ和B位摻雜Bi4FexTi3-xO12-δ Bi3.15Nd0.85NixTi3-xO12-δ, Bi3.15Nd0.85MnxTi3-xO12,Bi3.15Nd0.85CoxTi3-xO12-δ六個系列陶瓷樣品。不論是A位還是B位摻雜,磁性離子均成功進入到類鈣鈦礦層中相應(yīng)的位置;其中A位或B位摻Ni和Mn的樣品磁滯回線呈線性,室溫磁性較弱,而Fe和Co的B位摻雜使得樣品的磁滯回線呈現(xiàn)典型的鐵磁“S”型,在摻Fe系列x=2樣品中,觀察到了較明顯的室溫磁電耦合。對于磁性增強的內(nèi)在機制及磁電耦合機理,論文做了詳細的討論分析。 (2)探討了B位磁共摻雜三層鈣鈦礦Bi3.15Nd0.85Ti3O12(BNT)的磁性增強的內(nèi)在機制及室溫正磁電容效應(yīng)的微觀物理機制。采用傳統(tǒng)固相法制備得到(Bi3.15Nd0.85)(Ti2FexCo1-x)012-δ樣品。實驗發(fā)現(xiàn),樣品仍具有三層鈣鈦礦結(jié)構(gòu);與(1)中樣品相比,Fe和Co的共同摻雜雖同樣增加了樣品的漏流,但大大改善了樣品的磁性能。XPS價態(tài)分析結(jié)果表明,樣品中Fe3+與Fe2+共存。結(jié)合價態(tài)分析的結(jié)果,論文分析討論了樣品磁性增強的內(nèi)在機制;在x=0.5樣品中還觀察到了較大的正磁電容效應(yīng),當測試頻率為30kHz時,磁電容約為14.2%,而且磁電容效應(yīng)在低頻區(qū)較為顯著。 (3)研究了磁性元素的摻雜對四層鈣鈦礦BTF的磁改性機理。深入研究了由傳統(tǒng)固相法制備的BTF、Bi5Ti3Fe0.5Ni0.5O15(BTFN)和Bi4NdTi3Fe0.5Co0.5O15(BNTFC)三組陶瓷樣品的微觀結(jié)構(gòu)及各項性能。各樣品均形成四層鈣鈦礦結(jié)構(gòu),介電常數(shù)存在較強烈的介電色散,樣品鐵電性能優(yōu)良,與未摻BTF相比,Ni的B位摻雜、Nd的A位摻雜和Co的B位摻雜,確實改善了樣品的室溫鐵磁性,論文從離子半徑差及樣品中存在的可能耦合兩個方面分析了磁性增強的內(nèi)在機制。 (4)系統(tǒng)研究了B位磁摻雜Bi4NdTi3(Fe1-xMx)O15(M=Nk、Mn、Cr和Co)系列陶瓷樣品的室溫多鐵性,發(fā)現(xiàn)了“f0.3”現(xiàn)象,并對該現(xiàn)象出現(xiàn)的內(nèi)在物理機制進行了初步探討。采用改進固相法制備了磁性元素Ni、Mn、Co和Cr摻雜的BNTF系列樣品。各系列樣品均形成了四層鈣鈦礦結(jié)構(gòu),其中摻Co和Cr的樣品為單相結(jié)構(gòu),而在摻Ni和Mn的樣品中有少量氧化物出現(xiàn)。每個系列樣品的磁滯回線均呈現(xiàn)典型的鐵磁“S”型,除了Cr對樣品磁性能改善較小外,其余三個系列的樣品,在本文實驗范圍內(nèi),均當“x=0.3”時,樣品的磁性能最佳。論文從不同磁性離子的濃度比例和磁性離子摻雜位置的角度,對該現(xiàn)象出現(xiàn)的內(nèi)在物理機制進行了探討。對于室溫多鐵性能較佳的摻Ni和摻Co“x=0.3”樣品,我們進行了室溫磁電耦合的表征,當測試電場較小時,與測試電場同步施加的外磁場使得這兩個樣品均表現(xiàn)出了室溫磁電容效應(yīng);當測試電場較大時,與測試電場同步施加的外磁場增加了摻Ni樣品的Pr和Ec的值。 本論文的主要創(chuàng)新點如下: 1.在三層鈣鈦礦鐵電體BTO中,尋找到了本文實驗范圍內(nèi)的最佳磁改性方式,即B位磁性元素共摻雜。采用B位Fe和Co磁共摻雜,當Fe:Co=l:l時,樣品具有最佳的室溫多鐵性,并且觀察到了巨大的室溫正磁電容效應(yīng)。 2.在本文四層鈣鈦礦鐵電體BTF磁摻雜改性工作中,發(fā)現(xiàn)了“x=0.3”現(xiàn)象,即當Fe:M≈7:3時(M為摻入的磁性離子),樣品的磁改性效果最佳;不僅如此,在“x=0.3”樣品中,也可以觀察到較明顯的磁電耦合現(xiàn)象。
[Abstract]:The single-phase multi-iron material refers to a single-phase compound that exhibits both ferroelectric and magnetic properties at the same time. due to the combination of the ferroelectricity and the magnetic atomic layer in the single-phase multi-iron material, the magnetoelectric coupling quantum control can be realized, compared with those of the traditional magnetic materials or the ferroelectric materials, The single-phase multi-iron material with magnetoelectric coupling effect has great application potential in new information storage and magnetoelectric device. The core work of this thesis is to carry out the material modification of the ferroelectrics of the layered perovskite structure of three layers and four layers in the aspect of magnetic doping, and realize the coexistence of the ferroelectricity and the ferromagnetism at room temperature. The magnetic modification of the magnetic elements on the Bi4Ti3O12 (BTO) and the Bi5Ti3FeO15 (BTF) ceramic samples is found. The internal mechanism of the influence of the doping of the magnetic element on the BTO and the BTO material and the micro-physical mechanism of the mutual coupling and control of the ferroelectric and the ferromagnetic are also studied. It is divided into the following parts: (1) The changes of the temperature of the three-layer perovskite BTO doped with the magnetic element A or B and the temperature and magnetoelectric coupling effect of some samples at room temperature were studied. The preparation of the A-site doped Bi3.15-xNixNd0. 85Ti3O12, Bi3.15-xMnxNd0.85Ti3O12-1 and B-position-doped Bi4FexTi3-xO12-1, Bi3. 15Nd0.85MnxTi3-xO12, Bi3. 15Nd0.85CoxTi3-xO12-6 series of ceramic samples was prepared by conventional solid-phase reaction. The magnetic ions all enter the corresponding position in the perovskite-like layer. The magnetic hysteresis loop of the samples with the A-or B-position is linear and the room-temperature magnetism is higher. Weak, and the B-position doping of Fe and Co causes the magnetic hysteresis loop of the sample to present a typical ferromagnetic "S" type. In the Fe-doped x = 2 sample, it has been observed that a significant room temperature magnetoelectric coupling is observed In this paper, the internal mechanism of magnetic enhancement and the mechanism of magnetoelectric coupling are discussed in detail. In this paper, the intrinsic mechanism of magnetic enhancement of B-position magnetic co-doped three-layer perovskite Bi3. 15Nd0.85Ti3O12 (BNT) and the microstructure of the positive magnetic capacitance effect at room temperature are discussed. The method is prepared by the conventional solid-phase method (Bi3. 15Nd0.85) (Ti2FexCo1-x)012- The sample still has a three-layer perovskite structure. Compared with the sample in (1), the co-doping of Fe and Co increases the leakage of the sample, but greatly improves the sample. The results of the analysis of the valence state of the XPS indicate that the Fe 3 + and the Fe 2 in the sample In combination with the results of the valence state analysis, the intrinsic mechanism of the magnetic enhancement of the sample is discussed. The larger positive magnetic capacitance effect is also observed in the x = 0.5 sample. When the test frequency is 30 kHz, the magnetic capacitance is about 14.2%, and the magnetic capacitance effect is lower in the low frequency region. The doping of the magnetic element on the four-layer perovskite BTF was studied. The microstructure of three groups of ceramic samples of BTF, Bi5Ti3Fe0.5Ni0.5O15 (BTFN) and Bi4NdTi3Fe0.5Co0.5O15 (BNTFC) prepared by the traditional solid-phase method were studied. And all the samples form a four-layer perovskite structure, the dielectric constant has a strong dielectric dispersion, the sample ferroelectric performance is excellent, the B-position doping of the Ni, the A-position doping of the Nd and the B-position doping of the Co are improved compared with the non-doped BTF, and the sample is indeed improved. The magnetic enhancement is analyzed in terms of the difference of the ionic radius and the possible coupling in the sample at room temperature. The internal mechanism of B-position magnetic-doped Bi4NdTi3 (Fe1-xMx) O15 (M = Nk, Mn, Cr and Co) series of ceramic samples was studied in the system. The "f0.3" phenomenon was found and the intrinsic physical mechanism of the phenomenon was investigated. The magnetic elements Ni, Mn, Co and Cr-doped B were prepared by the modified solid-phase method. The NTF series of samples. Each series of samples forms a four-layer perovskite structure in which the Co and Cr-doped samples are single-phase structures, whereas in a sample doped with Ni and Mn A small amount of oxide is present. The hysteresis loop of each series of samples presents a typical ferromagnetic "S" type. In addition to the improvement of the magnetic performance of the sample, the remaining three series of samples, in the scope of this article, are all the same as in the "x=0.3" The magnetic properties of the product are the best. The intrinsic physics of this phenomenon is studied from the concentration ratio of the different magnetic ions and the position of the magnetic ion doping. The mechanism has been discussed. For the better Fe-doped and Co-doped "x=0.3" samples at room temperature, we have carried out the characterization of the magneto-electric coupling at room temperature. When the electric field of the test is small, the external magnetic field applied synchronously with the test electric field makes both samples show the effect of the magnetic capacitance at room temperature. When the test electric field is large, the external magnetic field applied synchronously with the test electric field increases the Ni-doped sample. The value of Pr and Ec. This theory The main innovation point of the paper is as follows:1. In the three-layer perovskite ferroelectric BTO, the best magnetic modification method in this paper is found. i. e., the b-bit magnetic element is co-doped. the b-bit fe and co-magnetic co-doping, when fe: co = l: l, the sample has the best room temperature polydoping and has been observed 2. In the four-layer perovskite ferroelectric BTF magnetic doping modification of this paper, the "x=0.3" phenomenon is found, that is, when Fe: M is 7:3 (M is the incorporated magnetic ion), the magnetic modification effect of the sample is the best; in addition, in the

"x = In the 0.3 " sample, you can also
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM221

【相似文獻】

相關(guān)期刊論文 前10條

1 屈紹波,楊祖培,高峰,田長生;弛豫鐵電體有序—無序轉(zhuǎn)變理論及進展[J];材料工程;2000年01期

2 徐文蘭,陸衛(wèi);多近鄰作用雙原子鏈和一維鐵電體晶格振動[J];紅外與毫米波學報;2000年05期

3 林比宏;回熱損失對鐵電體斯特林制冷循環(huán)性能影響[J];泉州師范學院學報;2000年06期

4 閆宗林,楊慶芬;馳豫鐵電體中極化微區(qū)動力學分析[J];石家莊鐵道學院學報;2001年02期

5 王春雷,薛旭艷,王淵旭,鐘維烈;低溫量子起伏對鐵電體介電行為的影響[J];哈爾濱理工大學學報;2002年06期

6 徐文蘭,李志峰,陸 衛(wèi);半導(dǎo)體和鐵電體集成體系晶格振動[J];紅外與毫米波學報;2002年S1期

7 李廣申,李克慶;鉛基復(fù)合鈣鈦礦型馳豫鐵電體介電理論研究進展[J];中國陶瓷工業(yè);2004年03期

8 張棟杰,姚熹;弛豫鐵電體結(jié)構(gòu)起伏與弛豫性研究[J];化學學報;2005年12期

9 張棟杰;弛豫鐵電體的弛豫性結(jié)構(gòu)研究[J];功能材料;2005年07期

10 易志國,李永祥,楊群保,王東,陸毅青,王英,殷慶瑞;鉍層狀共生鐵電體的研究進展[J];四川大學學報(自然科學版);2005年S1期

相關(guān)會議論文 前10條

1 楊文煌;李從周;;鐵電體鉬酸釓的布里淵散射[A];全國第三屆光散射學術(shù)會議論文摘要[C];1985年

2 隋巖;劉冬生;胡榮華;;基于取代苯甲酰脫氫樅酰胺的新型有機鐵電體[A];中國化學會第28屆學術(shù)年會第8分會場摘要集[C];2012年

3 Ni Yong;Chen Haitao;Shi Yuping;He Linghui;Su Aijia;;基于納米極化區(qū)翻轉(zhuǎn)動力學的弛豫鐵電體介電響應(yīng)模型[A];中國力學大會——2013論文摘要集[C];2013年

4 魯圣國;;馳豫型鐵電體材料的巨電卡效應(yīng)和電致伸縮性能[A];2013廣東材料發(fā)展論壇——戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展與新材料科技創(chuàng)新研討會論文摘要集[C];2013年

5 苗鴻臣;李法新;;新的鐵電體被翻轉(zhuǎn)譜壓電力顯微術(shù)發(fā)現(xiàn)了嗎?[A];北京力學會第20屆學術(shù)年會論文集[C];2014年

6 田曉寶;楊新華;操衛(wèi)忠;;不同應(yīng)變率條件下鐵電體180°疇結(jié)構(gòu)的力學行為模擬[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年

7 袁萬宗;;爆炸鐵電體電源[A];中國工程物理研究院科技年報(2000)[C];2000年

8 丁恩燕;陳洪斌;陸巍;陳志剛;劉天文;;鐵電體觸發(fā)開關(guān)實驗[A];中國工程物理研究院科技年報(2005)[C];2005年

9 方菲;桂紅;張孝文;;鋯鈦酸鉛鑭弛豫鐵電體中的玻璃態(tài)極化行為[A];94'全國結(jié)構(gòu)陶瓷、功能陶瓷、金屬/陶瓷封接學術(shù)會議論文集[C];1994年

10 葉萬能;盧朝靖;;Bi_4Ti_3O_(12)基鐵電體的結(jié)構(gòu)對稱性、疇結(jié)構(gòu)與疇壁可動性的透射電鏡研究[A];第十六屆全國晶體生長與材料學術(shù)會議論文集-06晶體結(jié)構(gòu)、缺陷和表征[C];2012年

相關(guān)博士學位論文 前5條

1 阿里(R A Ali);[D];山東大學;2005年

2 吳忠慶;復(fù)合鈣鈦礦型弛豫鐵電體介電性質(zhì)的理論研究[D];清華大學;2003年

3 謝琳;典型鋇基鐵電及弛豫鐵電體電子顯微學及第一性原理研究[D];清華大學;2012年

4 侯如鐘;鉍層狀化合物的結(jié)構(gòu)與鐵電、介電性能[D];浙江大學;2005年

5 陳曉琴;鉍系層狀鈣鈦礦鐵電體的磁性摻雜及多鐵性能研究[D];華中科技大學;2014年

相關(guān)碩士學位論文 前10條

1 顧洪良;不同裂紋電邊界條件對鐵電體非線性行為的影響[D];浙江大學;2013年

2 黃攀;鐵電體材料高介電常數(shù)測試技術(shù)研究[D];西安電子科技大學;2008年

3 侯建偉;電子型鐵電體的介電調(diào)諧性的研究[D];湘潭大學;2010年

4 胡曉琴;鈣鈦礦型鐵電體原子間相互作用勢的優(yōu)化及應(yīng)用[D];湘潭大學;2010年

5 王發(fā)棟;鐵電體性能測試系統(tǒng)優(yōu)化設(shè)計[D];西安科技大學;2014年

6 王賽;新型鐵電體的構(gòu)建與弛豫性研究[D];北京工業(yè)大學;2014年

7 袁敏;量子起伏對幾種先兆性鐵電體介電性質(zhì)的影響[D];山東大學;2005年

8 崔春玲;鐵電體疇結(jié)構(gòu)和極化反轉(zhuǎn)的計算機模擬[D];山東大學;2006年

9 丁恩燕;鐵電體觸發(fā)開關(guān)初步研究[D];中國工程物理研究院;2008年

10 陳育祥;BaTiO_3鐵電體輻射效應(yīng)的分子動力學模擬[D];湘潭大學;2009年

,

本文編號:2496116

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2496116.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8da5a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com