碳納米材料修飾電極強(qiáng)化微生物燃料電池產(chǎn)電特性與機(jī)理
[Abstract]:The problem of environment and energy has become a core problem that affects the survival and development of human beings. In recent years, the microbial fuel cell (MFC) can directly convert the chemical energy of the fuel into electric energy by using the microbial catalysis, and is a new technology which can realize the simultaneous electricity generation of the sewage purification, so that the microbial fuel cell (MFC) is widely concerned. At present, the output power density of MFC and the construction cost are too high to limit the actual application of MFC in the project With the optimization of the material of the reactor structure, the activation internal resistance of the microbial catalytic reaction from the surface of the electrode gradually becomes the key to the improvement of the MFC power; the construction cost is mainly derived from the noble metal used for catalyzing the oxygen reduction by the cathode, and the low-cost and high-efficiency chemical catalysis is found the preparation of the biological cathode by using the microorganism in place of the chemical catalyst can effectively reduce the construction of the MFC, According to the above problems, the surface modification of the anode electrode is realized by a simple method, the electron transfer rate between the microorganism and the anode electrode is improved, and the anode performance is improved; and at the cathode, the cheap and high-efficiency oxygen reduction composite catalyst is developed to replace the noble gold. Belongs to the field of Pt, or adopts a biological cathode to replace the noble metal catalyst, and the cheap and high-efficiency electrode material suitable for the biological cathode is screened, the biological cathode material is modified by a simple and high-efficiency method, the construction cost is reduced, and the MFC is improved. And provides valuable reference data and practical real-time practical application in material preparation and application to realize the large-scale practical application of the MFC. Application programme. The following main results are obtained The results are as follows: (1) The mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) are prepared by layer-by-layer self-assembly method, which shows that the mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) show that the mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) show that the mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) show that the mesoporous carbon the modified carbon paper has better stable electrochemical performance, such as increasing the reaction activation area and the electron transfer rate, The carbon paper modified with mesoporous carbon was used as the MFC of the anode to obtain 237 mW m-2 power density, which is 1.9 times (128 mW m-2) of the non-mesoporous carbon-modified carbon paper as the anode, and the starting time of the same period is also shortened by 68%, and the polarization loss of the anode and (2) in-situ synthesized manganese dioxide carbon nano-tube composite catalyst (in-situ MnO2/ CNTs'), the oxygen in the neutral buffer solution is very good, Scanning electron microscopy (SEM) showed that the MnO2 is well and uniformly modified on the surface of CNTs, and can still be attached stably after high-intensity ultrasound On the carbon paper electrode, the maximum output power density was 210 mW and the maximum output power density was 210 mW/ m2, which was equivalent to that of Pt/ C (229 mW m2), indicating that the "in-situ MnO2/ CNTs' could be used as an inexpensive and efficient oxygen reduction catalyst instead of Pt/ C." for MFC cathodes. (3) Selection of cathode materials for biological yin The current density and the maximum power density of GF-MFC were 350 mA and 109.5 mW, respectively, and higher than that of CP-MFC (210 mA m2and32.7 mW) and SSM-MFC (18 mA m2an). The corresponding MFC of the three materials obtained higher COD removal rate, and the GF-MFC was the largest. The coulomb efficiency is 11.7%. In the three materials, the graphite felt is most suitable for the two-chamber type In the cathode of MFC, CNTs-SSM (CNTs-SSM) modified by CNTs were prepared by simply and expansively. The SEM showed that CNTs were uniformly distributed on the surface of stainless steel mesh and a three-dimensional mesh junction was formed. The surface area of the structure is also improved, and the CNTs modified on the surface of the stainless steel mesh do not fall off after the high-strength ultrasonic wave, and the CNTs are explained. The combination of the stainless steel mesh is very stable. The maximum power density of the CNTs-SSM-MFC reaches 147 mW m2, which is the SSM-MFC (3 The results of the CV test show that the biofilms on the biological cathode can be used to catalyze the reduction of oxygen, and the CNTs-SSM biocathodes show the efficiency of the oxygen catalytic reduction. It is far higher than the SSM biological cathode. The SSM can adjust the fiber diameter and pore diameter during the production process, which can be the real time of the MFC. in addition, the characteristics of the easy-to-bend of the SSM can make it possible to construct the CNTs-SSM biological cathode of the corresponding structure shape according to the needs in the practical application of the MFC, such as
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:X703;TM911.45
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙麗坤;閆蕾蕾;李景晨;呂瑩瑩;郝耀彤;;產(chǎn)電微生物與微生物燃料電池研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2010年26期
2 孫世昌;張盼月;孫德智;肖凌鵬;馬欣;;無(wú)介體微生物燃料電池型BOD傳感器研究進(jìn)展[J];安全與環(huán)境學(xué)報(bào);2010年05期
3 付寧;王博;;微生物燃料電池在廢水處理中的應(yīng)用[J];環(huán)境科學(xué)與管理;2012年04期
4 劉佳;付玉彬;徐謙;李魁忠;趙仲凱;;Fenton試劑改性海底生物燃料電池陽(yáng)極及電化學(xué)性能[J];材料開發(fā)與應(yīng)用;2011年03期
5 蘇佳;付玉彬;宰學(xué)榮;;海底微生物燃料電池陽(yáng)極鄰苯二酚紫修飾及電化學(xué)性能[J];材料開發(fā)與應(yīng)用;2011年04期
6 曾麗珍;李偉善;;微生物燃料電池電極材料的研究進(jìn)展[J];電池工業(yè);2009年04期
7 次素琴;吳娜;溫珍海;李景虹;;微生物燃料電池電極材料研究進(jìn)展[J];電化學(xué);2012年03期
8 王剛;黃麗萍;張翼峰;;微生物燃料電池中生物陰極的研究與應(yīng)用現(xiàn)狀[J];環(huán)境科學(xué)與技術(shù);2008年12期
9 張亮;李俊;朱恂;廖強(qiáng);付乾;王永忠;葉丁丁;;交指型陰極流場(chǎng)的微生物燃料電池性能[J];工程熱物理學(xué)報(bào);2010年09期
10 白中炎;仲海濤;彭曉春;吳文娜;劉仁杰;;微生物燃料電池研究進(jìn)展[J];廣東化工;2008年08期
相關(guān)會(huì)議論文 前5條
1 田帥;梁英梅;張盼月;張多;;Fe~(3+)作陰極電子受體的MFC型BOD傳感器性能研究[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第四卷)[C];2013年
2 董坤;賈伯陽(yáng);劉紅;;降解纖維素產(chǎn)電微生物間協(xié)同作用分析[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第八卷)[C];2013年
3 陳禧;王煒;彭香琴;劉宇波;幸毅明;;微生物燃料電池結(jié)構(gòu)與材料研究進(jìn)展[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第八卷)[C];2013年
4 樊松鴿;王飛龍;冉冬琴;陳守文;;氧化錳修飾空氣陰極對(duì)雙室MFC產(chǎn)電性能的影響[A];第一屆氫能關(guān)鍵材料與應(yīng)用研討會(huì)論文集[C];2013年
5 鐘茜;許峗溢;楊冰雪;;用于廢水處理及產(chǎn)能的微生物燃料電池研究進(jìn)展[A];2014中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五章)[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 許科偉;污泥厭氧消化過程中乙酸累積的微生態(tài)機(jī)理研究[D];江南大學(xué);2010年
2 孫健;微生物燃料電池同步降解偶氮染料和產(chǎn)電的特性與機(jī)理[D];華南理工大學(xué);2010年
3 莫光權(quán);功能化碳納米管材料在微生物燃料電池中的應(yīng)用研究[D];華南理工大學(xué);2010年
4 王凱鵬;電子中介體固定化及其在微生物燃料電池陽(yáng)極的應(yīng)用[D];武漢大學(xué);2010年
5 李賀;折流板管狀空氣陰極微生物燃料電池構(gòu)建及產(chǎn)電特性研究[D];哈爾濱工業(yè)大學(xué);2011年
6 張培遠(yuǎn);微生物燃料電池能量特性研究[D];北京工業(yè)大學(xué);2011年
7 劉洪英;分子超光譜成像的生物組織定量檢測(cè)與方法研究[D];華東師范大學(xué);2011年
8 李中堅(jiān);基于微生物電化學(xué)系統(tǒng)的廢水處理技術(shù)研究[D];浙江大學(xué);2012年
9 楊永剛;微生物燃料電池的電子傳遞方式及其在典型有機(jī)污染物降解中的應(yīng)用研究[D];華南理工大學(xué);2011年
10 侯彬;同步脫色剛果紅與產(chǎn)電的微生物燃料電池的性能和機(jī)理研究[D];華南理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 孫茜;微生物燃料電池處理難降解有毒廢水實(shí)驗(yàn)研究[D];哈爾濱工程大學(xué);2010年
2 李建海;海底沉積物微生物燃料電池陽(yáng)極表面改性及電極構(gòu)型研究[D];中國(guó)海洋大學(xué);2010年
3 周寧波;納米二氧化鈰制備、表征及修飾微生物燃料電池陽(yáng)極的研究[D];華東理工大學(xué);2011年
4 甘琳琳;微生物燃料電池的PCP共代謝降解動(dòng)力學(xué)[D];大連理工大學(xué);2011年
5 遲美玲;提高微生物燃料電池性能的電極材料研究[D];南開大學(xué);2011年
6 孫世昌;雙室無(wú)介體型微生物燃料電池在BOD傳感器中的研究初探[D];北京林業(yè)大學(xué);2011年
7 周玲;鹽橋連接下微生物燃料電池陽(yáng)極材料及其應(yīng)用的研究[D];廣東工業(yè)大學(xué);2011年
8 彭艷麗;生物酶/LDH插層及應(yīng)用研究[D];山東輕工業(yè)學(xué)院;2011年
9 趙世輝;雙室型微生物燃料電池在制漿廢水處理中的應(yīng)用研究[D];華南理工大學(xué);2011年
10 武晨;微生物燃料電池處理苯胺廢水的產(chǎn)電特性研究[D];天津理工大學(xué);2011年
本文編號(hào):2485106
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2485106.html