基于改進(jìn)人工魚群算法的光伏系統(tǒng)MPPT研究
發(fā)布時(shí)間:2019-05-24 12:12
【摘要】:針對(duì)光伏系統(tǒng)最大功率點(diǎn)跟蹤(MPPT)傳統(tǒng)算法的不足,提出一種改進(jìn)的人工魚群算法(IAFSA),該算法將擾動(dòng)觀察法(PO)引入到人工魚群算法。首先利用擾動(dòng)觀察法實(shí)時(shí)性強(qiáng)和跟蹤快速的特點(diǎn)找到系統(tǒng)的最大功率點(diǎn),然后由人工魚群算法對(duì)全局最大功率點(diǎn)進(jìn)行快速搜索跟蹤,確定功率點(diǎn)極值,避免了擾動(dòng)觀察法使功率最大點(diǎn)陷入局部極值的問題。應(yīng)用Matlab仿真,分別以標(biāo)準(zhǔn)環(huán)境溫度下光照均勻和光照部分被遮蔽以及不同環(huán)境溫度下光照部分被遮蔽3種條件對(duì)IAFSA與傳統(tǒng)的PO和PSO算法最大功率點(diǎn)跟蹤效果進(jìn)行比較,仿真結(jié)果表明,采用IAFSA算法可有效跟蹤光伏系統(tǒng)的最大功率點(diǎn),提高系統(tǒng)的應(yīng)用效率。
[Abstract]:In view of the shortcomings of the traditional (MPPT) algorithm for maximum power point tracking in photovoltaic systems, an improved artificial fish swarm algorithm (IAFSA), is proposed, which introduces the disturbance observation method (PO) into the artificial fish swarm algorithm. Firstly, the maximum power point of the system is found by using the characteristics of strong real-time performance and fast tracking of the disturbance observation method, and then the global maximum power point is quickly searched and traced by the artificial fish swarm algorithm to determine the extreme value of the power point. The problem of maximum power point falling into local extreme value by disturbance observation method is avoided. Using Matlab simulation, the maximum power point tracking effect of IAFSA is compared with that of traditional PO and PSO algorithms under three conditions: uniform lighting and shading of lighting part at standard ambient temperature and masking of lighting part at different ambient temperatures, respectively. the maximum power point tracking effect of PO and PSO algorithm is compared with that of traditional PO and PSO algorithm. The simulation results show that the IAFSA algorithm can effectively track the maximum power point of photovoltaic system and improve the application efficiency of the system.
【作者單位】: 江蘇科技大學(xué)電子信息學(xué)院;
【基金】:基金項(xiàng)目: 江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程(PAPD)
【分類號(hào)】:TP18;TM615
[Abstract]:In view of the shortcomings of the traditional (MPPT) algorithm for maximum power point tracking in photovoltaic systems, an improved artificial fish swarm algorithm (IAFSA), is proposed, which introduces the disturbance observation method (PO) into the artificial fish swarm algorithm. Firstly, the maximum power point of the system is found by using the characteristics of strong real-time performance and fast tracking of the disturbance observation method, and then the global maximum power point is quickly searched and traced by the artificial fish swarm algorithm to determine the extreme value of the power point. The problem of maximum power point falling into local extreme value by disturbance observation method is avoided. Using Matlab simulation, the maximum power point tracking effect of IAFSA is compared with that of traditional PO and PSO algorithms under three conditions: uniform lighting and shading of lighting part at standard ambient temperature and masking of lighting part at different ambient temperatures, respectively. the maximum power point tracking effect of PO and PSO algorithm is compared with that of traditional PO and PSO algorithm. The simulation results show that the IAFSA algorithm can effectively track the maximum power point of photovoltaic system and improve the application efficiency of the system.
【作者單位】: 江蘇科技大學(xué)電子信息學(xué)院;
【基金】:基金項(xiàng)目: 江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程(PAPD)
【分類號(hào)】:TP18;TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 楊海柱;金新民;;并網(wǎng)光伏系統(tǒng)最大功率點(diǎn)跟蹤控制的一種改進(jìn)措施及其仿真和實(shí)驗(yàn)研究[J];電工電能新技術(shù);2006年01期
2 劉立群;王志新;張華強(qiáng);;部分遮蔽光伏發(fā)電系統(tǒng)模糊免疫M(jìn)PPT控制[J];電力自動(dòng)化設(shè)備;2010年07期
3 劉艷莉;周航;程澤;;基于粒子群優(yōu)化的光伏系統(tǒng)MPPT控制方法[J];計(jì)算機(jī)工程;2010年15期
4 何龍;程樹英;;基于遺傳算法和擾動(dòng)觀察法的MPPT算法[J];現(xiàn)代電子技術(shù);2009年24期
5 章丹艷;吳曉波;趙夢(mèng)戀;嚴(yán)曉浪;;光伏電池最大功率點(diǎn)跟蹤芯片的設(shè)計(jì)[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2009年11期
6 翟載騰;程曉舫;丁金磊;查s,
本文編號(hào):2484846
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2484846.html
最近更新
教材專著