永磁無刷直流電機控制器的研究與設計
[Abstract]:The permanent magnet brushless DC motor uses electronic commutation instead of the mechanical commutation of the DC motor. It has the advantages of high operating efficiency and good speed regulation performance of the DC motor, while at the same time it has the simple structure and reliable operation of the AC motor. Maintenance convenience and a series of advantages, and rotor using permanent magnet excitation, no excitation loss. The advent and development of high performance rare earth permanent magnet materials, such as neodymium, iron and boron, has greatly promoted the production and application of permanent magnet brushless DC motors. At present, it has spread throughout aerospace, military equipment, industrial automation, medical equipment, and household appliances. Electric cars and many other fields. The permanent magnet brushless DC motor has the advantages of high operating efficiency, wide speed range, large power density and large output torque, so it is especially suitable for the drive motor of electric vehicle. Permanent magnet brushless DC motor (BLDCM), as a mechatronic motor product, is an organic whole with the supporting controller, both of which must be designed synchronously. This paper analyzes the basic structure and working principle of the permanent magnet brushless DC motor system, expounds the commutation logic control principle of the six-phase asymmetrical permanent magnet brushless DC motor, deduces and establishes its mathematical model, including voltage equation, reverse electromotive force equation, and so on. Electromagnetic torque equation and motion equation. The simulation model of six-phase asymmetrical permanent magnet brushless DC motor control system is built by using MATLAB/Simulink simulation environment, and the simulation analysis is carried out to verify the correctness of the control system. It provides a theoretical basis for studying the cause of commutation torque ripple and putting forward the suppression strategy of commutation torque ripple. The outstanding problem of permanent magnet brushless DC motor is torque ripple. Torque ripple seriously restricts the application of permanent magnet brushless DC motor in low ripple speed regulation system and high precision servo system. In this paper, the causes of commutation torque ripple are analyzed in detail, and it is concluded that during commutation period, the off-phase current drop rate is not equal to the on-off phase electric power rise rate, which causes the non-commutation current ripple, resulting in the torque ripple. Two control strategies are proposed to suppress commutation torque ripple, which are non-commutation current hysteresis control and overlapping commutation control based on pwm-on-pwm modulation, aiming at the different ripple performance of medium-low speed operation and high-speed operation. The simulation results show that the proposed commutation torque ripple suppression strategy is correct and effective. Finally, based on the above theory and simulation, a permanent magnet brushless DC motor controller based on DSPCPLD is designed. The hardware circuit design, software program design and upper computer design are introduced. After setting up the hardware system platform of the controller, some experiments have been carried out and the expected results have been achieved. The results show that the designed permanent magnet brushless DC motor controller can work normally and has good performance and the stator current waveform of the motor is better than that of the permanent magnet brushless DC motor.
【學位授予單位】:東北大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM33
【相似文獻】
相關期刊論文 前10條
1 袁林興;焦振宏;楊燕;王聘;;直接面向轉矩脈動的轉矩補償方法[J];微電機(伺服技術);2006年04期
2 劉向陽;劉景林;白冰洋;;稀土永磁無刷直流電動機轉矩脈動研究[J];微電機(伺服技術);2006年07期
3 許鎮(zhèn)琳;江偉;王秀芝;吳忠;;無刷直流伺服電機換向轉矩脈動的分析和消除[J];電氣傳動;1994年05期
4 上官璇峰,王海星,焦留成;永磁無刷直流電動機的轉矩脈動及其削弱方法[J];微電機(伺服技術);2001年03期
5 王瑜;桂衛(wèi)華;王成立;;減小電力牽引中電機轉矩脈動方法研究[J];變頻器世界;2005年12期
6 沈天珉;杜川;廖家祥;邱忠才;;轉矩脈動最小化的直接轉矩控制系統(tǒng)[J];電氣技術;2008年07期
7 王淑紅;熊光煜;;永磁無刷直流電動機轉矩脈動的減小及動態(tài)仿真[J];哈爾濱理工大學學報;2008年04期
8 江博;楊磊;張敏;;間接轉矩控制的仿真研究[J];煤礦機械;2010年07期
9 趙月花;張曉濤;;電動自行車轉矩脈動抑制分析與實現(xiàn)[J];自動化應用;2012年03期
10 夏鯤;徐鑫悅;丁曉波;朱琳玲;陳文;;永磁無刷直流電動機轉矩脈動抑制方法研究綜述[J];系統(tǒng)仿真學報;2014年07期
相關會議論文 前2條
1 侯軒;李永東;曾毅;;空間矢量PWM的轉矩脈動優(yōu)化[A];第11屆全國電氣自動化電控系統(tǒng)學術年會論文集[C];2002年
2 肖曦;李永東;;無刷直流電機轉矩脈動抑制策略研究[A];第12屆全國電氣自動化與電控系統(tǒng)學術年會論文集[C];2004年
相關博士學位論文 前5條
1 李洋;四輪驅動電動汽車永磁同步輪轂電機驅動系統(tǒng)轉矩控制研究[D];吉林大學;2015年
2 邱建琪;永磁無刷直流電動機轉矩脈動抑制的控制策略研究[D];浙江大學;2002年
3 曾輝;開關磁阻電動機平滑轉矩及無位置傳感器控制研究[D];中國礦業(yè)大學;2014年
4 陳煒;永磁無刷直流電機換相轉矩脈動抑制技術研究[D];天津大學;2006年
5 吳峻;交流電機的轉矩控制及電動車驅動技術的研究[D];中國人民解放軍國防科學技術大學;2000年
相關碩士學位論文 前10條
1 張輝;低轉矩脈動的單相開關磁阻電機設計與控制[D];湖南工業(yè)大學;2015年
2 董昊;無刷直流電機抑制轉矩脈動的研究[D];大連海事大學;2015年
3 李學鋒;低轉矩脈動開關磁阻電機控制方法[D];中國礦業(yè)大學;2015年
4 吳慎華;電動車用開關磁阻電機驅動系統(tǒng)的設計與優(yōu)化[D];大連理工大學;2015年
5 宋志鵬;模糊邏輯控制的異步電動機直接轉矩控制系統(tǒng)[D];太原科技大學;2014年
6 徐鑫悅;基于準Z源直流變換器的無刷直流電機換相轉矩脈動抑制若干關鍵問題研究[D];上海理工大學;2014年
7 宋乾儒;永磁無刷直流電機控制器的研究與設計[D];東北大學;2014年
8 許嘉峰;永磁無刷直流電機控制系統(tǒng)的研究[D];東北大學;2014年
9 王哲;永磁無刷直流電機轉矩脈動抑制方法研究[D];哈爾濱工業(yè)大學;2010年
10 蔡東升;無刷直流伺服電機辨識和轉矩脈動抑制的研究[D];電子科技大學;2011年
,本文編號:2471943
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2471943.html