天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

多組多鈷基催化劑催化硼氫化鈉制氫技術(shù)的研究

發(fā)布時(shí)間:2019-02-13 13:14
【摘要】:燃料電池作為一種高效潔凈的發(fā)電裝置,其發(fā)展受到了各國政府的高度重視。以高純氫氣作為燃料應(yīng)用于燃料電池時(shí),其催化劑具有催化穩(wěn)定性強(qiáng)、產(chǎn)電效率高、產(chǎn)電能力強(qiáng)等優(yōu)點(diǎn),被視為高溫條件下燃料電池理想燃料的首選。NaBH4水解/醇解產(chǎn)氫技術(shù)具有儲氫量高、制取氫氣純度高、環(huán)境友好、產(chǎn)氫過程方便可控等優(yōu)點(diǎn),是目前廣為探討的供氫技術(shù)之一。 常溫條件下的NaBH4水解產(chǎn)氫需要在催化劑氛圍下進(jìn)行,目前制備出的催化劑普遍都受成本高、對環(huán)境要求苛刻、催化穩(wěn)定性差和再生能力弱等問題的制約,不利于大規(guī)模實(shí)際應(yīng)用。因此,開發(fā)廉價(jià)、穩(wěn)定性強(qiáng)、抗毒性強(qiáng)的過渡金屬催化劑應(yīng)用于NaBH4催化水解/醇解制氫,對NaBH4直接水解燃料電池的應(yīng)用都具有非常重要的理論價(jià)值和實(shí)際意義。本論文對廉價(jià)高效過渡金屬催化劑在醇/水溶液和實(shí)際水體中的產(chǎn)氫進(jìn)行研究,主要研究內(nèi)容和結(jié)果如下: 1、以過渡金屬Ni、Fe、Cu和稀土金屬Y、Ce和La作為助催化劑,考察了鈷基催化劑催化NaBH4水解制氫過程的催化性能,實(shí)驗(yàn)發(fā)現(xiàn)助催化劑摻雜量對催化活性存在一最佳范圍,Ni、Fe、Cu、Y、Ce和La等助劑含量的最佳值分別為20%、20%、10%、30%、30%和30%。當(dāng)助催化劑處于最佳值時(shí),各催化劑的催化活性依次為NiYCuLaCeFe無助劑。各催化劑所對應(yīng)的催化反應(yīng)活化能值按大小依次為:FeCeLaCuY。Co-Fe-B/At催化劑活化能最大的為64.85kJ/mol; Co-Y-B/At催化劑活化能最小為35.69kJ/mol; 2、考查了NaBH4在醇/水混合液產(chǎn)氫過程中醇/水體積比對產(chǎn)氫過程的影響,發(fā)現(xiàn)產(chǎn)氫速率隨醇/水體積比的升高先增大后降低,當(dāng)醇/水體積比保持為75%時(shí)產(chǎn)氫速率最高,產(chǎn)生這種現(xiàn)象的原因可能是:催化劑對于乙醇和水電離出的-OH存在離子競爭吸附過程。由于水中的O-H鍵更容易極化,可以優(yōu)先與催化劑顆粒表面接觸,而乙醇由于-CH3基團(tuán)誘導(dǎo)的疏水性,使其減緩了乙醇中的O-H鍵與催化劑表面的接觸,降低了產(chǎn)氫速率。同時(shí),在乙醇溶液的生成產(chǎn)物中NaB(OH)4溶于水中會增大溶液的粘度,抑制反應(yīng)物離子向催化劑表面、產(chǎn)物離子從催化劑表面向液相的擴(kuò)散,也降低了產(chǎn)氫速率; 3、系統(tǒng)地考察了以Ti02、凹凸棒石和硅膠為載體的多組分催化劑的催化性能,實(shí)驗(yàn)發(fā)現(xiàn)按照催化活性由大到小的排列順序?yàn)椋篢i02凹凸棒石硅膠,平均產(chǎn)氫速率分別為6.84L/(min.g、2.89L/(min.g)和2.39L/(min.g)。通過多次循環(huán)實(shí)驗(yàn)考查了負(fù)載型催化劑的催化穩(wěn)定性,結(jié)果表明以凹凸棒石為載體的催化劑催化穩(wěn)定性較好,10次循環(huán)實(shí)驗(yàn)后催化活性降低為初始時(shí)的75%,而以Ti02為載體的催化劑在10次循環(huán)實(shí)驗(yàn)后活性降低為初始的29.27%; 4、考查了NaBH4濃度、NaOH濃度和催化劑中Y含量等因素對Co-Y-B/Ti02催化劑催化產(chǎn)氫速率的影響,三者對產(chǎn)氫速率均存在最佳范圍,分別是8%、8%和30%;活性組分負(fù)載量和反應(yīng)溫度均對產(chǎn)氫速率呈正相關(guān)作用。通過分析以Ti02、凹凸棒和硅膠作為載體的Co-Y-B催化劑的催化行為,建立了一級催化反應(yīng)動(dòng)力學(xué)模型,它們在NaBH4醇/水解過程中的催化反應(yīng)均符合一級反應(yīng)動(dòng)力學(xué)模型; 5、以采集的天然河水作為溶劑進(jìn)行產(chǎn)氫實(shí)驗(yàn)時(shí),對應(yīng)的平均產(chǎn)氫速率低于蒸餾水產(chǎn)氫速率,反應(yīng)過程中包括NaBH4濃度、NaOH濃度、反應(yīng)溫度等因素對產(chǎn)氫過程的影響同蒸餾水體系類似;河水中Ca(HCO3)2、CaCl2和NaHCO3等鹽成分對產(chǎn)氫過程有較大影響,而KCl、、MgSO4、Na2SO4和NaCl等鹽成分對產(chǎn)氫速率影響很小;通過響應(yīng)面分析可優(yōu)化NaBH4濃度、NaOH濃度、反應(yīng)溫度、載體種類和Y添加量等5個(gè)因素得到平均產(chǎn)氫速率的最佳值,回歸得到二次方程模型,該模型預(yù)測值與實(shí)驗(yàn)數(shù)據(jù)誤差較小,實(shí)驗(yàn)?zāi)P涂煽俊?br/>[Abstract]:As an efficient and clean power generation device, the fuel cell is highly valued by governments. The catalyst has the advantages of strong catalytic stability, high production efficiency, strong electric capacity and the like when the high pure hydrogen is used as the fuel, and is regarded as the first choice for the ideal fuel of the fuel cell under the high-temperature condition. NaBH4 hydrolysis/ alcoholysis hydrogen production technology has the advantages of high hydrogen storage capacity, high purity of the prepared hydrogen, environment-friendly, convenient and controllable hydrogen production process and the like, and is one of the widely explored hydrogen supply technologies. The production of hydrogen by NaBH4 under normal temperature needs to be carried out under the atmosphere of a catalyst, and the currently prepared catalyst is generally subject to the problems of high cost, severe environmental requirements, poor catalytic stability and weak regeneration capacity, and is not conducive to large-scale practical application. Therefore, it has very important theoretical value and practical meaning to the application of the transition metal catalyst with low cost, high stability and strong anti-toxicity to NaBH4 catalytic hydrolysis/ alcohol solution for hydrogen production. This paper studies the hydrogen production of cheap and efficient transition metal catalyst in the alcohol/ water solution and the actual water, and the main contents and results are as follows: Lower: 1, with transition metal Ni, Fe, Cu and rare earth metals Y, Ce and La as co-active agents The catalytic performance of the catalytic NaBH4 hydrolysis hydrogen production process of the cobalt-based catalyst was investigated. The experimental results show that the optimum range of the co-catalyst doping amount to the catalytic activity is 20%, 20%, 10%, 30%, 30%, respectively. When the co-catalyst is at the optimum value, the catalytic activity of each catalyst is NiYCuLaCeFe. The activation energy of the catalytic reaction corresponding to each catalyst is as follows: the activation energy of the FeCeLaCuY. Co-Fe-B/ At catalyst is the maximum of 64. 85kJ/ mol; the activation energy of the Co-Y-B/ At catalyst is at least 35. 69kJ/ mol. in mol; 2, that alcohol/ water volume ratio of NaBH4 in the hydrogen production process of the alcohol/ water mixture is investigated to produce hydrogen. The effect of the process is that the hydrogen production rate decreases with the increase of the alcohol/ water volume ratio, and the hydrogen production rate is the highest when the alcohol/ water volume ratio is maintained at 75%. because the O-H bond in the water is more easily polarized, the surface of the catalyst particles can be preferentially contacted with the surface of the catalyst particles, and the ethanol is reduced by the hydrophobicity induced by the-CH3 group, so that the contact and the reduction of the O-H bond in the ethanol and the surface of the catalyst are reduced, In addition, NaB (OH) 4 in the product of the ethanol solution is dissolved in water to increase the viscosity of the solution, inhibit the reaction of the reactant ions to the surface of the catalyst, and the diffusion of the product ions from the surface of the catalyst to the liquid phase is also reduced. a hydrogen-producing rate; a systematic examination. The catalytic performance of multi-component catalyst supported by Ti02, attapulgite and silica gel was investigated. The results showed that the average hydrogen production rate was 6.84L/ (min. g, 2.89L/ (min. g) and 2.39L/ (min. g) and 2.39L/ (min. g) and 2.39L/ (min. g) and 2.39L/ (min. g) respectively. The catalytic stability of the supported catalyst was investigated by multiple cycle experiments. The results show that the catalytic stability of the catalyst with attapulgite as the carrier is good, and the catalytic activity after 10 cycles is reduced to 75% of the initial time, while the activity of the catalyst with Ti02 as the carrier was reduced to an initial activity after 10 cycles The effects of NaBH4 concentration, NaOH concentration and Y content in the catalyst on the hydrogen production rate of Co-Y-B/ Ti02 catalyst were investigated. The optimum range is 8%, 8% and 30%, respectively, and the loading and reaction temperature of the active component are the same. The catalytic behavior of Co-Y-B catalyst supported by Ti02, attapulgite and silica gel was analyzed, and the first-order catalytic reaction kinetic model was established. The catalytic reaction in the process of NaBH4 alcohol/ hydrolysis was met. First level and 5, when the natural river water collected is used as a solvent to produce hydrogen production experiments, the corresponding average hydrogen production rate is lower than that of the distilled water, and the influence of factors such as NaBH4 concentration, NaOH concentration, reaction temperature and the like on the hydrogen production process is similar to that of the distilled water system; and the river The salt components such as Ca (HCO3) 2, CaCl 2 and NaHCO3 in water have a great effect on the hydrogen production process, and the salt components such as KCl, MgSO4, Na2SO4 and NaCl have little effect on the hydrogen production rate, and the NaBH4 concentration can be optimized by the response surface analysis. 5 factors such as NaOH concentration, reaction temperature, carrier type and Y addition amount are obtained to obtain the optimum value of the average hydrogen production rate, and the regression is obtained by the quadratic equation model, and the model prediction value and the experimental data
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM911.4;TQ116.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張軻;劉述麗;劉明明;張洪波;魯捷;曹中秋;張輝;;氫能的研究進(jìn)展[J];材料導(dǎo)報(bào);2011年09期

2 侯明;衣寶廉;;燃料電池技術(shù)發(fā)展現(xiàn)狀與展望[J];電化學(xué);2012年01期

3 孟黎清;燃料電池的歷史和現(xiàn)狀[J];電力學(xué)報(bào);2002年02期

4 王書明;蔣利軍;劉曉鵬;王樹茂;;硼氫化鈉催化水解供氫的研究[J];電源技術(shù);2006年10期

5 衣寶廉;燃料電池現(xiàn)狀與未來[J];電源技術(shù);1998年05期

6 王兵;李心清;袁洪林;周會;趙彥龍;;黃河下游地區(qū)河水主要離子和鍶同位素的地球化學(xué)特征[J];環(huán)境化學(xué);2009年06期

7 范士鋒;;金屬儲氫材料研究進(jìn)展[J];化學(xué)推進(jìn)劑與高分子材料;2010年02期

8 賈同國;王銀山;李志偉;;氫能源發(fā)展研究現(xiàn)狀[J];節(jié)能技術(shù);2011年03期

9 錢令希,鐘萬勰,程耿東,隋允康;工程結(jié)構(gòu)優(yōu)化設(shè)計(jì)的一個(gè)途徑——序列二次規(guī)劃SQP[J];計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用;1984年01期

10 隋允康,,邢譽(yù)峰,張桂明;基于兩點(diǎn)累積信息的原/倒變量展開的對偶優(yōu)化方法[J];力學(xué)學(xué)報(bào);1994年06期



本文編號:2421580

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2421580.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e9d79***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com