AP1000蒸發(fā)器傳熱管破裂事故分析及敏感性研究
[Abstract]:In this paper, AP1000 nuclear power plant is taken as the object. Firstly, the system analysis program RELAP5 is used to model the model. Referring to the SGTR accident process of Westinghouse Company, the trigger logic and sequence of safety system and auxiliary system are set up, and the simulation calculation of AP1000 SGTR accident is carried out. The calculation results of steady state and transient state (single heat transfer tube rupture) and SGTR accident analysis results of Westinghouse Company are compared and analyzed. Then on the basis of the single heat transfer tube rupture accident model, the SGTR accident is further analyzed, and the multiple heat transfer tube rupture accident is studied, in order to verify the non-active safety characteristics of the power plant. The effect on the accident consequence of whether the power plant is effective or not and whether the air release valve of the intact side is open or not is investigated. Finally, sensitivity analysis is carried out for the break model and the number of heat transfer pipe nodes. The results show that the model based on RELAP5 is in good agreement with the calculation results of LOFTTR2 of Westinghouse, and the steady-state thermal parameters such as pressure, temperature and flow rate are in good agreement. The variation trend of transient parameters is roughly the same. Because of the difference of physical model, there are some differences in numerical value. AP1000 can avoid the overflowing of damaged SG and have a certain margin by relying on inactive residual heat discharge system. Under the condition of rupture of multiple heat transfer pipes, it is possible that two phases will appear in the reactor, which will lead to flow instability, which needs to be paid attention to. Changing the hypothetical conditions for characteristic analysis and sensitivity study have different degrees of influence on the consequence of the accident. Different fracture models will change the process of the accident and the quality of coolant loss, and the number of nodes will affect the critical discharge rate of the break, but the response of the system is roughly the same, and the SG of the damaged side is not overflowing. The safety of the third generation nuclear power technology is verified, and the research results can further support the AP1000 related review.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM623.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣立國(guó);彭敏俊;郭峗;劉建閣;;直流蒸汽發(fā)生器傳熱管破裂事故分析[J];原子能科學(xué)技術(shù);2012年09期
2 蔣立國(guó);彭敏俊;劉建閣;郭峗;;傳熱管破裂位置及根數(shù)對(duì)SGTR事故進(jìn)程的影響[J];核科學(xué)與工程;2012年01期
3 袁明豪;馮雷;周擁輝;于雪良;;AP1000核電廠蒸汽發(fā)生器傳熱管破裂事故的分析研究[J];核安全;2009年04期
4 邢可霞;郭懷成;;環(huán)境模型不確定性分析方法綜述[J];環(huán)境科學(xué)與技術(shù);2006年05期
5 林萌,蘇云,胡銳,楊燕華;核電站工程模擬器用于SGTR事故仿真分析研究[J];原子能科學(xué)技術(shù);2005年03期
6 柴寶華,周潤(rùn)彬,許國(guó)華,魏國(guó)鋒;不同破口面積下蒸汽發(fā)生器傳熱管破裂事故試驗(yàn)研究[J];核動(dòng)力工程;2003年S2期
7 石俊英;WWER-1000型核電站SGTR事故分析[J];核動(dòng)力工程;2002年02期
8 李吉根,俞爾俊,,戴傳曾;秦山核電廠SGTR事故及其處置研究[J];核科學(xué)與工程;1996年03期
9 孫崧青,張忠岳;不確定度分析方法的改進(jìn)及實(shí)際應(yīng)用[J];原子能科學(xué)技術(shù);1996年05期
10 黃芳芝,鄭福裕;壓水堆核電廠蒸汽發(fā)生器傳熱管破裂事故處理的研究[J];核動(dòng)力工程;1993年06期
相關(guān)會(huì)議論文 前1條
1 袁明豪;周擁輝;于雪良;翁方儉;;CPR1000與AP1000核電站蒸汽發(fā)生器傳熱管破裂事故分析研究[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告——中國(guó)核學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第一卷·第3冊(cè))[C];2009年
相關(guān)碩士學(xué)位論文 前1條
1 林支康;AP1000核電廠小破口失水事故RELAP5分析模式建立與應(yīng)用[D];上海交通大學(xué);2012年
本文編號(hào):2419820
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2419820.html