天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

過硫酸鹽陰極型微生物燃料電池降解活性艷藍(lán)及產(chǎn)電性能的研究

發(fā)布時間:2019-01-16 04:51
【摘要】:本論文以蒽醌染料活性艷藍(lán)KN-R作為目標(biāo)污染物,以零價鐵(Fe0)和二價鐵(Fe2+)活化過硫酸鹽(PDS)的高級氧化技術(shù)降解KN-R作為對照,研究了將Fe2+和Fe0活化PDS高級氧化體系耦合到微生物燃料電池陰極,并探討了體系初始pH值,F(xiàn)en和PDS初始投加量對活性艷藍(lán)KN-R的降解和MFC的產(chǎn)電性能的影響。實驗結(jié)論如下: 1.以Fe2+和Fe0來分別活化PDS時降解KN-R。在Fe2+/PDS體系中,KN-R的降解分為快速反應(yīng)階段和慢速反應(yīng)階段,并且兩個階段都符合一級反應(yīng)動力學(xué)模型。pH值和Fe2+投加量是限制體系氧化降解污染物能力的主要因素,,隨著PDS的濃度增大,體系中KN-R的降解率逐漸增加。在Fe0/PDS體系中,KN-R的降解遵循準(zhǔn)一級動力學(xué)方程。體系能夠很好的克服Fe2+/PDS體系中pH和Fe2+投加量閾值較低問題,在中性條件下(pH=7),KN-R取得最大的降解率,為93.12%;同時,隨著初始Fe0投加量的增加,KN-R的降解速度明顯加快,當(dāng)Fe0投加量為448mg/L,PDS為2mmol/L時,KN-R的降解反應(yīng)速率常數(shù)為0.0414min-1。 2.在耦合MFC之前研究了陽極為連續(xù)型時,HRT和陰極電子受體對MFC產(chǎn)電性能的影響,當(dāng)HRT為18h時,陰極曝空氣時MFC的最大功率密度達(dá)到最大為34.15mW/m2,在此條件下將Fe2+/PDS體系和Fe0/PDS體系分別作為MFC陰極液時,探討活性艷藍(lán)KN-R的降解情況以及體系的產(chǎn)電性能。在Fe2+/PDS-MFC體系中, KN-R的降解遵循二級反應(yīng)動力學(xué)方程。與Fe2+/PDS體系相比,F(xiàn)e2+/PDS-MFC體系并沒有突破pH值和Fe2+投加量的限制,對體系的氧化能力影響不大,但能夠顯著加快體系中PDS的消耗速度,并且在弱酸性(pH=5)條件下KN-R也幾乎完全降解;體系的產(chǎn)電能力受到pH值限制比較嚴(yán)重,但Fe2+投加量對體系的產(chǎn)電性能抑制作用并不明顯,隨著初始PDS濃度的增加,體系的輸出功率逐漸增大。當(dāng)初始pH為3,PDS初始濃度為2mmol/L,F(xiàn)e2+投加量為1mmo/L時,體系的最大功率密度為294.07mW/m2。 與Fe0/PDS體系相同,在Fe0/PDS-MFC體系中,KN-R的降解也遵循準(zhǔn)一級動力學(xué)方程,體系受pH值、Fe0投加量和PDS濃度影響較弱,在本研究的各參數(shù)條件下都能獲得較高的KN-R降解率,且污染物的降解速度明顯高于Fe0/PDS體系,在相同的Fe0投加量時,KN-R的降解反應(yīng)速率提高了4.26-7.39倍;體系的產(chǎn)電能力低于Fe2+/PDS-MFC體系,受各參數(shù)條件的影響較大,當(dāng)初始pH為3,PDS初始濃度為1mmol/L,F(xiàn)e0投加量為28mg/L時體系各項性能達(dá)到最佳,此時KN-R的降解率為98.98%,最大功率密度為127.66mW/m2。 3.考察了四個體系最佳條件下TOC的去除率和活性艷藍(lán)KN-R的降解光譜。結(jié)果表明在Fe0/PDS-MFC體系中TOC的去除率最大,F(xiàn)e2+/PDS-MFC體系中TOC的去除率高于Fe2+/PDS體系。Fe0/PDS體系TOC低于Fe0/PDS-MFC體系的原因是前者PDS活化產(chǎn)生SO4-·的速度較低,在有限的時間內(nèi)不能很好的礦化污染物。對KN-R降解過程中的UV-vis光譜分析得知,體系中產(chǎn)生的SO4-·先破壞KN-R結(jié)構(gòu)中的2-磺酸-1,4二氨基蒽醌大共軛發(fā)色體系,使活性艷藍(lán)KN-R脫色,然后再對蒽醌結(jié)構(gòu)和苯環(huán)結(jié)構(gòu)進(jìn)行開環(huán)反應(yīng)。
[Abstract]:In this paper, the degradation of KN-R with the high-level oxidation technology of zero-valent iron (Fe0) and divalent iron (Fe2 +)-activated persulfate (PDS) was used as the control for the high-grade oxidation of the dye-reactive brilliant blue KN-R as the target pollutant. The effects of the initial pH value of the system, the initial investment of Fen and PDS on the degradation of the reactive brilliant blue KN-R and the electrical properties of the MFC were studied. The experimental conclusion is as follows: 1. Degradation of KN-when the PDS is activated with Fe2 + and Fe0, respectively. R. In the Fe2 +/ PDS system, the degradation of KN-R is divided into a rapid reaction stage and a slow reaction stage, As the concentration of PDS increased, the degradation rate of KN-R in the system increased gradually. Plus. In the Fe0/ PDS system, the degradation of KN-R follows the quasi-first-order kinetics. In the neutral condition (pH = 7), the maximum degradation rate of KN-R was 93. 12%. At the same time, with the increase of initial Fe0, the degradation rate of KN-R was increased obviously. When the addition of Fe0 was 448mg/ L, the PDS was 2mmol/ L. The degradation reaction rate constant of KN-R is 0.0414min-1. 2. The effect of the HRT and the cathode electron acceptor on the electrical properties of the MFC was studied before the MFC was coupled. When HRT was 18h, the maximum power density of MFC reached to 34. 15mW/ m2 when the HRT was 18h, and the Fe2 +/ PDS system and the Fe0/ PDS system were used as MFC in this condition. The degradation of reactive brilliant blue KN-R and the production of the system were discussed. Electrical performance. In the Fe2 +/ PDS-MFC system, the degradation of KN-R follows the secondary reaction power. Compared with the Fe2 +/ PDS system, the Fe2 +/ PDS-MFC system does not break through the limit of the pH value and the amount of Fe 2 +, but the oxidation capacity of the system is not large, but the consumption rate of the PDS in the system can be obviously accelerated, and the KN-R is almost finished under the condition of weak acid (pH = 5). Total degradation; the electric capacity of the system is limited by the pH value, but the effect of the addition of Fe2 + on the electrical property of the system is not obvious, and the output power of the system is determined by the increase of the initial PDS concentration. The maximum power density of the system is 294.07mW when the initial pH is 3, the initial concentration of the PDS is 2mmol/ L, the addition amount of the Fe2 + is 1mmo/ L. In the same way as the Fe0/ PDS system, in the Fe0/ PDS-MFC system, the degradation of KN-R also follows the quasi-first-order kinetic equation, and the system is affected by the pH value, the concentration of Fe0 and the concentration of the PDS, and the high KN-R degradation rate can be obtained under the conditions of each parameter of the study, and the degradation speed of the pollutants is obviously higher than that of the Fe0/ PDS. The degradation reaction rate of KN-R is increased by 4.26-7.39 times when the same Fe0 is added, and the electric capacity of the system is lower than that of the Fe2 +/ PDS-MFC system. The initial pH is 3, the initial concentration of PDS is 1mmol/ L and the addition of Fe0 is 28mg/ L. At this time, the degradation rate of KN-R is 98. 98% and the maximum power density is 127.66. The removal rate and reactive brilliant blue KN of the TOC under the optimum conditions of the four systems were investigated. The results show that the removal rate of TOC in the Fe0/ PDS-MFC system is the most, and the removal rate of TOC in the Fe2 +/ PDS-MFC system is higher than that of the Fe2 +/ PDS-MFC system. +/ PDS system. The reason that the TOC of the Fe0/ PDS system is lower than that of the Fe0/ PDS-MFC system is that the former PDS is activated to produce SO4-. The speed is low, and it can't be very effective in a limited time. In the process of KN-R degradation, the UV-vis spectrum analysis was carried out. The results of UV-vis analysis in the system of KN-R were obtained. The 2-sulfonic acid-1, 4-diamino-1, 4-diamino-1, and the large-scale co-emission color system in KN-R structure were destroyed, and the active brilliant blue KN-R was decolorized, and then the structure of the disulfide bond and the benzene ring junction were carried out.
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM911.45;X703

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 馮雅麗;周良;祝學(xué)遠(yuǎn);連靜;李少華;;Geobacter metallireducens異化還原鐵氧化物三種方式[J];北京科技大學(xué)學(xué)報;2006年06期

2 羅固源;;造紙工業(yè)廢水的處理技術(shù)[J];重慶環(huán)境科學(xué);1988年02期

3 劉瑩;徐惠忠;韓京龍;張章堂;陳博彥;;基質(zhì)濃度·電極距離·離子強(qiáng)度對MFC影響的研究[J];環(huán)境科學(xué)與技術(shù);2011年09期

4 付乾;李俊;廖強(qiáng);朱恂;丁玉棟;;過硫酸鉀為電子受體的微生物燃料電池性能特性[J];工程熱物理學(xué)報;2009年08期

5 董振海,胥維昌;光催化降解染料廢水的研究現(xiàn)狀及展望[J];染料與染色;2003年03期

6 張宇峰,滕潔,張雪英,王曉軍,徐炎華;印染廢水處理技術(shù)的研究進(jìn)展[J];工業(yè)水處理;2003年04期

7 陸朝陽,沈莉莉,張全興;吸附法處理染料廢水的工藝及其機(jī)理研究進(jìn)展[J];工業(yè)水處理;2004年03期

8 魏文圃,張志剛;活性炭在印染廢水脫色中的應(yīng)用[J];工業(yè)水處理;1996年02期

9 馮玉杰;王鑫;李賀;任南琪;;乙酸鈉為基質(zhì)的微生物燃料電池產(chǎn)電過程[J];哈爾濱工業(yè)大學(xué)學(xué)報;2007年12期

10 施躍錦;馬楠;;蒽醌類染料廢水處理的研究進(jìn)展[J];化工時刊;2009年06期



本文編號:2409483

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2409483.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶64f64***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com