基于滑模變結(jié)構(gòu)控制的風(fēng)力發(fā)電機組雙PWM變流器的設(shè)計與仿真研究
[Abstract]:With the rapid development of the global economy, human demand for energy is increasing. Because of the increasing shortage of conventional resources such as coal and oil on the earth, and the utilization of the conventional resources can bring a lot of pollution to the environment, in order to solve the problems of energy and environment, we can reasonably utilize the conventional resources such as coal, oil and the like, The use of renewable resources must be vigorously developed. As a safe, environment-friendly and new type of renewable energy, wind energy is inexhaustible. With the mature of the wind power generation technology, the cost of wind power generation is also decreasing. In the field of wind power generation, the direct drive type wind generating set has become an important research direction. In this paper, the control strategy of the dual PWM converter is analyzed and studied based on the direct drive type wind generating set, and the control strategy of the sliding mode variable structure is applied to the control system of the dual PWM converter, and the simulation model of the wind power generation system is established in the MATLAB simulation software, It is proved that the design method proposed in this paper is feasible. In this paper, the modeling and simulation of the control system of the double-PWM converter of the direct-drive wind-driven generator set are studied. Firstly, this paper introduces the basic structure and related characteristics of the direct-drive permanent-magnet wind power generation system, and introduces the basic principle of each component in detail. On this basis, the mathematical model of each component is established, including the wind turbine model and the transmission system model. The model of the permanent-magnet synchronous generator, the mathematical model of the double-PWM converter and the mathematical model of the intermediate DC link. Secondly, the basic principle of the sliding mode variable structure control is introduced, and a non-singular terminal sliding mode with fast convergence is designed for the disadvantage of the dynamic performance difference of the non-singular terminal sliding mode at the far distance from the equilibrium point. Based on the control principle of the sliding mode variable structure, the DC side voltage, the d-axis current and the q-axis current of the grid-side PWM converter are respectively designed, and the basic principle of the SVPWM pulse width modulation and its realization method are introduced in detail. Thirdly, the method of maximum power point tracking (MPPT) and the principle of the vector control of the permanent magnet synchronous generator are introduced, and the realization method of the maximum power point tracking control and the zero d-axis current vector control based on the optimal blade tip speed ratio is given. On the basis of this, the double closed-loop control principle of the rotating speed outer ring and the current inner ring of the machine-side PWM converter is introduced. Then, the rotational speed, d-axis current and q-axis current of the machine-side PWM converter are designed based on the sliding mode variable structure control theory. In the end, the control of the position sensor of the permanent magnet synchronous generator is studied in the wind power generation system, the model of the sliding mode observer is designed, and the rotor speed and the rotor position of the permanent magnet synchronous generator are estimated by the model to replace the position sensor. and the position sensor control of the permanent-magnet synchronous generator is realized. Finally, the simulation model of the control of the network-side PWM converter, the simulation model of the machine-side PWM converter and the simulation model of the sliding mode observer are set up in the MATLAB simulation software. then the whole model of the wind power system is simulated and tested, and the simulation result analysis shows that the control strategy of the double-PWM converter of the wind generating set can realize the maximum power point tracking of the wind energy and realize the unit power factor of the grid voltage and the network, The control system has good dynamic performance and steady-state performance. On the basis of this, the simulation model of the wind power generation system based on the sliding mode observer is established, and the simulation analysis shows that the wind power generation system based on the sliding mode observer can accurately estimate the rotor speed and the rotor position of the permanent magnet synchronous generator, and the position-free sensor control of the permanent-magnet synchronous generator is realized.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM315;TM46
【相似文獻】
相關(guān)期刊論文 前10條
1 陳培民;五相混合式步進電動機PWM調(diào)頻調(diào)壓驅(qū)動[J];華僑大學(xué)學(xué)報(自然科學(xué)版);1995年02期
2 張奇?zhèn)?陳國定;趙國炳;;雙饋風(fēng)力發(fā)電系統(tǒng)的PWM變流技術(shù)[J];機電工程;2009年08期
3 趙學(xué)平;李欣;陳杰;邊姜;;電動助力轉(zhuǎn)向系統(tǒng)永磁直流電機PWM控制模式研究[J];系統(tǒng)仿真學(xué)報;2010年01期
4 鄭雪欽;;雙矢量PWM雙饋風(fēng)力發(fā)電系統(tǒng)并網(wǎng)控制[J];廈門理工學(xué)院學(xué)報;2013年03期
5 粟梅;肖鵬;孫堯;;隨機脈沖位置PWM及其在矩陣變換器中的實現(xiàn)[J];中國電機工程學(xué)報;2006年06期
6 李慧;朱德文;;基于PWM控制的高速開關(guān)電磁閥在汽車防抱死制動系統(tǒng)中的應(yīng)用[J];機械研究與應(yīng)用;2007年03期
7 林勇軍,李娟娟,張敬華;PWM供電下的永磁無刷直流電動機仿真研究[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2003年02期
8 錢平,劉勤;零轉(zhuǎn)換—PWM有源功率因數(shù)校正器的實現(xiàn)[J];上海應(yīng)用技術(shù)學(xué)院學(xué)報(自然科學(xué)版);2001年01期
9 賈貴璽,徐偉,郭寶鑰,張臣堂;同步發(fā)電機勵磁系統(tǒng)中PWM控制的仿真研究[J];中國工程科學(xué);2005年06期
10 黃明;;基于PWM控制的動態(tài)無功補償裝置研究[J];電工電氣;2012年05期
相關(guān)會議論文 前10條
1 陳權(quán);姜衛(wèi)東;;PWM控制中點鉗位式三電平變換器通態(tài)損耗分析[A];安徽節(jié)能減排博士科技論壇論文集[C];2007年
2 張曉冰;張昌玉;任美輝;梁原華;;程控電度表校驗臺PWM電源關(guān)鍵技術(shù)的研究[A];08全國電工測試技術(shù)學(xué)術(shù)交流會論文集[C];2008年
3 白煜;;單片機PWM的應(yīng)用[A];新世紀(jì) 新機遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(下冊)[C];2001年
4 王德偉;劉惠康;周銘秋;;雙PWM變頻器原理分析[A];冶金企業(yè)自動化、信息化與創(chuàng)新——全國冶金自動化信息網(wǎng)建網(wǎng)30周年論文集[C];2007年
5 譚驚濤;周志健;;小型風(fēng)力發(fā)電用PWM全橋變流器簡介[A];中國農(nóng)機工業(yè)協(xié)會風(fēng)能設(shè)備分會《中小型風(fēng)能設(shè)備與應(yīng)用》(2014年第1期)[C];2014年
6 王劍飛;李建林;胡書舉;鄂春良;;背靠背PWM變流器在永磁直驅(qū)型風(fēng)力機上的應(yīng)用[A];2008中國電工技術(shù)學(xué)會電力電子學(xué)會第十一屆學(xué)術(shù)年會論文摘要集[C];2008年
7 韓亞超;;PWM新型雨刷控制器的設(shè)計[A];第五屆河南省汽車工程科技學(xué)術(shù)研討會論文集[C];2008年
8 高潮;;一種新型高性能恒頻PWM諧振開關(guān)變流器[A];第二十六屆中國控制會議論文集[C];2007年
9 陳一飛;鄧燕;;基于差時PWM氣體流量控制的氣缸開環(huán)速度控制研究[A];第八屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2010年
10 夏玲;;異步電動機PWM變頻調(diào)速系統(tǒng)的建模與仿真[A];’2004系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文集[C];2004年
相關(guān)重要報紙文章 前2條
1 廣東 王澤雄;基于PWM逆變技術(shù)的12V~48V四擋可調(diào)通用充電器[N];電子報;2003年
2 西安 趙彥萍;用PWM放大器SA08實現(xiàn)400Hz電源[N];電子報;2005年
相關(guān)博士學(xué)位論文 前3條
1 許春雨;軟開關(guān)三相PWM逆變技術(shù)研究[D];上海大學(xué);2005年
2 楊達亮;主動配電網(wǎng)PWM變流器動態(tài)高品質(zhì)控制方法研究[D];廣西大學(xué);2014年
3 袁慶慶;雙三電平PWM變頻器低開關(guān)頻率關(guān)鍵技術(shù)研究[D];中國礦業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 陳金水;基于極諧振軟開關(guān)的PWM功率放大器研究與設(shè)計[D];電子科技大學(xué);2015年
2 向志強;基于雙PWM變流器的永磁直驅(qū)風(fēng)電系統(tǒng)電壓穩(wěn)定性研究[D];新疆大學(xué);2015年
3 黎值源;基于單DSP控制的雙PWM變頻器的整流器的研究與設(shè)計[D];東北大學(xué);2013年
4 張浩;雙PWM變流器控制系統(tǒng)設(shè)計[D];浙江工業(yè)大學(xué);2015年
5 趙煜華;基于模糊PI控制的三相PWM變流器研究[D];浙江工業(yè)大學(xué);2015年
6 李星宇;大功率交直交PWM變流器電磁能量變換的研究[D];冶金自動化研究設(shè)計院;2014年
7 何宗領(lǐng);基于滑模變結(jié)構(gòu)控制的風(fēng)力發(fā)電機組雙PWM變流器的設(shè)計與仿真研究[D];東北大學(xué);2014年
8 龐輝;基于PWM控制的動態(tài)無功補償裝置的建模與仿真研究[D];合肥工業(yè)大學(xué);2005年
9 黎職富;基于高頻PWM的電液比例控制系統(tǒng)的研究與設(shè)計[D];湖南大學(xué);2008年
10 楊勇;汽車用稀土永磁發(fā)電機與PWM穩(wěn)壓控制技術(shù)的研究[D];山東理工大學(xué);2008年
,本文編號:2396618
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2396618.html