鋰離子電池正極材料磷酸鐵鋰的溶劑熱合成及其改性
發(fā)布時間:2018-12-14 17:56
【摘要】:鋰離子電池正極材料磷酸鐵鋰因其循環(huán)性能好、材料來源廣泛、低毒、環(huán)境友好、理論比容量高、熱穩(wěn)定性高等優(yōu)點而被認為是最有希望取代鈷酸鋰而成為電動車和混合動力車的電源。但是磷酸鐵鋰三個明顯的缺點(電子電導率低、離子導電率低和振實密度低)阻礙了其市場大規(guī)模化應(yīng)用。人們?yōu)榱烁纳芁iFePO4的電化學性能和提高振實密度做了大量的工作。本文針對以上的問題,開展了如下的工作: (1)采用溶劑熱法合成鋰離子電池正極材料LiFePO4,運用X射線衍射(XRD)、紅外光譜(IR)、掃描電鏡(SEM)、高分辨透射電鏡(TEM)、選區(qū)電子衍射(SAED)和恒流充放電測試表征了產(chǎn)物的晶體結(jié)構(gòu),形貌、微觀結(jié)構(gòu)和電化學性能。結(jié)果表明,在200℃下,添加2ml乙二胺,溶劑熱反應(yīng)24h獲得的材料具有片狀結(jié)構(gòu),尺寸在0.5~1.5μm之間,厚度約為50nm、結(jié)晶度較高,片狀結(jié)構(gòu)有利于縮短鋰離子的擴散距離,提高材料的電化學性能。我們還探討了時間,溫度以及乙二胺對產(chǎn)物結(jié)構(gòu)及形貌的影響。通過不同時間下產(chǎn)物的XRD圖和SEM簡單闡述了片狀結(jié)構(gòu)LiFePO4的生長機理。電化學測試結(jié)果表明,材料在0.1C、0.2C和1C倍率下的放電比容量分別為120.6、104.9和68.8mAh·g-1。 (2)采用溶劑熱法一步合成了振實密度達到了1.2g.cm3鳥巢狀分級結(jié)構(gòu)橄欖石型磷酸鐵鋰樣品。該樣品具有較高的結(jié)晶度,長5-11μm,直徑3-7μm由厚度約為70nm,暴露(100)晶面的納米片組成。該分級結(jié)構(gòu)既能保持片狀結(jié)構(gòu)的優(yōu)異電化學性能,又能保持類球形結(jié)構(gòu)的高振實密度。N2吸附脫附測試結(jié)果表明材料的BET比表面積為6.8m2.g-1,平均孔徑分布在20nm。這種結(jié)構(gòu)有利于鋰離子擴散和電解液的滲透。對比實驗表明P123對材料的形貌有較大影響。通過不同時間下產(chǎn)物的XRD圖和SEM簡單闡述了鳥巢狀分級LiFePO4的生長機理。電化學測試結(jié)果表明,加入P123制得的鳥巢狀分級結(jié)構(gòu)磷酸鐵鋰樣品的電化學性能優(yōu)于未加P123時制得的餅狀結(jié)構(gòu)。 (3)以葡萄糖為碳源對LiFePO4進行表面包覆。使用XRD、IR和TEM對LiFePO4/C進行表征。恒流充放電測試、循環(huán)伏安測試和交流阻抗法測試顯示LiFePO4/C材料具有優(yōu)異的的電化學性能。通過化學原位聚合氧化法制得LiFeP04/PPy復合材料,運用SEM和IR對材料進行表征。恒流充放電測試結(jié)果表明,LiFeP04/PPy復合材料在0.1C、0.2C、0.5C和1C倍率電流下充放電時的放電比容量為155、145、130.8和117.0mAh·g-1。
[Abstract]:Lithium iron phosphate, the cathode material of lithium ion battery, is characterized by its good cycling performance, wide source, low toxicity, friendly environment and high theoretical specific capacity. It is considered to be the most promising power source for electric vehicles and hybrid vehicles because of its high thermal stability. However, three obvious disadvantages of lithium iron phosphate (low electronic conductivity, low ionic conductivity and low vibrational density) hinder its large-scale application in the market. A great deal of work has been done to improve the electrochemical performance and the vibrational density of LiFePO4. In order to solve the above problems, the following work has been done: (1) Solvothermal synthesis of lithium ion battery cathode material LiFePO4, using X-ray diffraction (XRD), infrared spectrum (IR), scanning electron microscope (SEM), The crystal structure, morphology, microstructure and electrochemical properties of the products were characterized by high resolution transmission electron microscopy (TEM) (TEM), selective electron diffraction (SAED) and constant current charge-discharge measurements. The results show that at 200 鈩,
本文編號:2379063
[Abstract]:Lithium iron phosphate, the cathode material of lithium ion battery, is characterized by its good cycling performance, wide source, low toxicity, friendly environment and high theoretical specific capacity. It is considered to be the most promising power source for electric vehicles and hybrid vehicles because of its high thermal stability. However, three obvious disadvantages of lithium iron phosphate (low electronic conductivity, low ionic conductivity and low vibrational density) hinder its large-scale application in the market. A great deal of work has been done to improve the electrochemical performance and the vibrational density of LiFePO4. In order to solve the above problems, the following work has been done: (1) Solvothermal synthesis of lithium ion battery cathode material LiFePO4, using X-ray diffraction (XRD), infrared spectrum (IR), scanning electron microscope (SEM), The crystal structure, morphology, microstructure and electrochemical properties of the products were characterized by high resolution transmission electron microscopy (TEM) (TEM), selective electron diffraction (SAED) and constant current charge-discharge measurements. The results show that at 200 鈩,
本文編號:2379063
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2379063.html
最近更新
教材專著