天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

新型能量轉(zhuǎn)化與儲存材料的制備及其電化學(xué)性能研究

發(fā)布時間:2018-11-29 11:40
【摘要】:石油和天然氣等傳統(tǒng)化石能源,由于其不可再生性、低的能源轉(zhuǎn)化效率以及在使用過程中對環(huán)境造成的污染等,激勵科學(xué)家們尋求可取代傳統(tǒng)化石能源的高效綠色能源,能量轉(zhuǎn)化與儲存技術(shù)也在此背景下應(yīng)運(yùn)而生,以燃料電池技術(shù)、超級電容器技術(shù)和鋰離子電池技術(shù)為代表。能量轉(zhuǎn)化和能量儲存是對能源有效利用的兩個方面,最近提出的一種‘自充電能量單元’概念更是實(shí)現(xiàn)了兩者的完美結(jié)合。但是,無論是能量轉(zhuǎn)化技術(shù)還是能量儲存技術(shù)中,電極材料的選取和制備都是至關(guān)重要的;诖,在本文中,我們使用簡單的合成方法制備了多種納米結(jié)構(gòu)材料,并對它們進(jìn)行了結(jié)構(gòu)和相應(yīng)的電化學(xué)性能表征,為制作可能的能量轉(zhuǎn)化與儲存一體化器件作準(zhǔn)備。本文具體研究的內(nèi)容和結(jié)論如下: 1.使用外加磁場和簡單的N2H4還原法,制備了大量的鋸齒形狀Ni基亞微米線,其直徑大約為500-700nm,長度為10-30μm。緩慢供應(yīng)作為Ni(Co)源的Ni2+離子是形成鋸齒形結(jié)構(gòu)的一個控制因素。電化學(xué)測試的結(jié)果表明,制備的鋸齒形Ni基亞微米線與Ni納米顆粒和光滑的Ni亞微米線相比,對甲醇的催化氧化有更好的活性和穩(wěn)定性,這是由于這種獨(dú)特的鋸齒形結(jié)構(gòu)兼?zhèn)鋪單⒚拙的幾何線型結(jié)構(gòu)和納米顆粒尺寸效應(yīng)。此外,由于Ni和Co元素的協(xié)同作用,NiCo亞微米線的電子傳輸性能得到極大改善,表現(xiàn)出比Ni亞微米線更優(yōu)異的電化學(xué)活性。因此,由于制備簡單、成本低和產(chǎn)量高等優(yōu)點(diǎn),這類鋸齒形亞微米線將會是一種很有前途的應(yīng)用于堿性燃料電池的非貴金屬陽極催化劑。 2.以AgNO3為Ag源,在乙二醇體系中合成Ag納米線;然后在氨-乙醇水熱體系下,Ag納米線有效地嵌入到氮摻雜石墨烯納米片層中,從而得到氮摻雜石墨烯/Ag納米線復(fù)合材料。復(fù)合材料中大量嵌入的Ag納米線阻止了氮摻雜石墨烯片的重新堆疊,且形成三維的多孔通道,從而使得催化劑參加氧氣催化還原的活性面積大幅增加,同時也促進(jìn)了02氣和OH-離子的傳輸。由于氮摻雜石墨烯與Ag納米線之間的這種協(xié)同效應(yīng),氮摻雜石墨烯/Ag納米線復(fù)合材料表現(xiàn)出比單純的氮摻雜石墨烯和Ag納米線更好的電催化性能,它們有望用作高效的堿性燃料電池的陰極催化劑。 3.使用水熱反應(yīng)合成α-MnO2納米線,未經(jīng)任何的表面改性,在Co(NO3)2和NH4F前驅(qū)溶液中,二步水熱反應(yīng)合成了一種新的α-MnO2內(nèi)米線/C0304納米顆粒復(fù)合結(jié)構(gòu)。NH4F和反應(yīng)前驅(qū)液的濃度是合成這種復(fù)合結(jié)構(gòu)的關(guān)鍵因素。高濃度前驅(qū)體溶液中合成的復(fù)合結(jié)構(gòu)是一種bead on string結(jié)構(gòu),大的C0304納米顆粒(約120nm)分布在α-MnO2納米管上。而在低濃度前驅(qū)液中α-MnO2納米管表面完全覆蓋著一層超細(xì)的C0304納米顆粒(約10-20nm),形成一層納米薄層,這提高了電荷的傳輸性質(zhì),阻礙了含Mn物種的溶解,并兼顧了離子傳輸至α-MnO2納米管,無論是α-MnO2納米管還是超細(xì)的Co304納米粒子對電荷存儲都表現(xiàn)出增強(qiáng)的電化學(xué)活性,其比容量和倍率性能表現(xiàn)出比α-MnO2納米管和物理混合的α-MnO2納米管和Co304納米顆粒更好,此外,即使在2000次循環(huán)充放電后,仍保持87.5%的初始比電容值。這種精心設(shè)計(jì)的復(fù)合結(jié)構(gòu)具有優(yōu)異的能量存儲特性,這也提供給了一種在不使用碳基或聚合物基的導(dǎo)電材料,實(shí)現(xiàn)構(gòu)建高性能的超級電容器的可能途徑。 4.以泡沫鎳為基底,我們首次制備一種獨(dú)特的三維分枝狀單晶β-Co(OH)2納米線陣列。這種結(jié)構(gòu)的形成歸因于在生長過程中β-Co(OH)2特定的拓?fù)浣Y(jié)構(gòu)和crystal splitting效應(yīng)。接著,以分枝狀β-Co(OH)2納米線陣列為骨架,在納米線外包覆Mn02超薄納米片片層,在4500C加熱后,構(gòu)建了分枝狀Co3O4/MnO2核殼納米線陣列。在10mA/cm2電流密度下,分枝狀Co3O4/MnO2核殼納米線陣列具有0.99F/cm2的面積電容,并且仍然保留了69.3%在1mA/cm2下的電容值(1.43F/cm2)。如此出色的電化學(xué)性能歸因于這種獨(dú)特的核殼結(jié)構(gòu),即多孔Co304納米線‘核’和超薄Mn02納米片‘殼’形成的強(qiáng)力協(xié)同效應(yīng)。這個特殊的分枝狀β-Co(OH)2在超級電容器和其它電化學(xué)設(shè)備上具有很好的應(yīng)用前景。 5.以二步陽極氧化的氧化鋁為模板,四硫代鉬酸銨為前驅(qū)體,經(jīng)簡單的熱分解反應(yīng)獲得一種分枝狀MoS2納米管,且該納米管具有特殊的竹節(jié)狀結(jié)構(gòu)。使用掃描電子顯微鏡和高分辨透射電子顯微鏡對這種分枝狀MoS2納米管進(jìn)行了研究,并討論了納米管的竹節(jié)狀結(jié)構(gòu)的可能形成機(jī)制。四硫代鉬酸銨在模板孔中的形態(tài)決定形成的納米管形貌,納米管的孔徑和長度取決于氧化鋁模板的孔徑和厚度,而管壁厚度取決于氧化鋁模板納米孔壁的四硫代鋁酸銨的量。對比使用大納米孔徑氧化鋁模板(200nm)發(fā)現(xiàn),納米管竹節(jié)狀的微觀形貌受前驅(qū)液與孔內(nèi)壁間潤濕性
[Abstract]:The traditional fossil energy sources such as oil and natural gas, due to their non-renewable energy, low energy conversion efficiency and the pollution to the environment during the use, encourage the scientists to seek efficient green energy sources which can replace the traditional fossil energy sources, The energy conversion and storage technology is also under this background, and is represented by the fuel cell technology, the super capacitor technology and the lithium ion battery technology. Energy conversion and energy storage are two aspects of energy efficient utilization, one of the most recent Self-charging energy unit 'The concept is a perfect combination of both. However, both energy conversion technology and energy storage technology are critical for the selection and preparation of electrode materials. On the basis of this, in this paper, we have prepared a variety of nanostructured materials using a simple synthesis method, and characterized by their structure and corresponding electrochemical performance to prepare the possible energy conversion and storage integrated devices. The contents and conclusions of the study are as follows: 1. Using an external magnetic field and a simple N2H4 reduction method, a large number of saw-tooth-shaped Ni-Chia-micron lines were prepared with a diameter of about 500-700n. m, the length is 10-30. m u.m. Ni2 + ions which are slowly supplied as the source of the Ni (Co) are a control for forming the zigzag structure. The results of the electrochemical test show that the prepared zigzag Ni-1 micron line has better activity and stability compared with the Ni nano-particles and the smooth Ni sub-micron line. Sex, this is because this unique zigzag structure has both the geometric line structure of the sub-micron line and the size effect of the nano-particle In addition, due to the synergistic effect of the Ni and Co elements, the electronic transmission performance of the NiCo sub-micron line is greatly improved, and the electrochemical activity is better than that of the Ni sub-micron line. and therefore, because of the advantages of simple preparation, low cost, high yield and the like, the saw-toothed sub-micron line will be a promising non-noble metal anode catalyst for alkaline fuel cells and 2, using AgNO3 as an Ag source to synthesize the Ag nano-wire in the glycol system, and then effectively embedding the Ag nano-wire into the nitrogen-doped graphene nano-layer under the ammonia-ethanol water thermal system, so as to obtain the nitrogen-doped graphene/ Ag nano-wire complex, the large number of embedded Ag nanowires in the composite material prevent the re-stacking of the nitrogen-doped graphene sheets and form a three-dimensional porous channel, so that the active area of the catalyst to participate in the oxygen catalytic reduction is greatly increased, and the 02 gas and the OH-ions are also promoted due to the synergistic effect between the nitrogen-doped graphene and the Ag nano-wire, the nitrogen-doped graphene/ Ag nanowire composite material exhibits better electrocatalytic performance than the pure nitrogen-doped graphene and the Ag nano-wire, and is expected to be used as the cathode of the high-efficiency alkaline fuel cell. Co (NO3) 2 and NH4F precursor solution and two-step hydrothermal reaction in the Co (NO3) 2 and the NH4F precursor solution were synthesized by hydrothermal reaction. The concentration of the NH4F and the reaction precursor is the synthesis of such a composite structure. the composite structure synthesized in the high-concentration precursor solution is a bead on string structure, and the large C0304 nano-particles (about 120nm) are distributed in the high-concentration precursor solution, and the surface of the carbon-MnO2 nanotube in the low-concentration precursor completely covers an ultra-fine C0304 nano-particle (about 10-20nm) to form a thin layer of nano-layer, which improves the transmission property of the electric charge, O 2 nanotubes, whether the I-MnO2 nanotubes or the ultra-fine Co304 nanoparticles exhibit enhanced electrochemical activity for charge storage, exhibit a specific capacity and rate performance than the Al-MnO2 nanotubes and the physically mixed O2-MnO2 nanotubes and Co304 nanoparticles Better, and, in addition, 87.5% of the initial charge was maintained even after the 2000 cycle charge and discharge. This well-designed composite structure has excellent energy storage characteristics, which also provides a conductive material that does not use a carbon-based or polymer-based material to achieve the construction of a high-performance super-capacitor A unique three-dimensional branched single-crystal I-Co (OH) was prepared for the first time on the basis of foam nickel) 2 nanowire arrays. The formation of such a structure is due to the particular topology and crystal spli of the HCO3-Co (OH) 2 during the growth process. and then, a branch-like Co3O4/ MnO2 is constructed after the nano-wire is heated by 4500C by taking a branch-like carbon-Co (OH) 2 nanowire array as a framework, and coating the Mn02 ultrathin nanosheet layer outside the nanowire, The core-shell nanowire array. The branch-like Co3O4/ MnO2 core-shell nanowire array has an area capacitance of 0.99F/ cm2 at a current density of 10mA/ cm2, and a capacitance value of 63.9% at 1mA/ cm2 (1.4 3F/ cm2). This excellent electrochemical performance is due to this unique core shell structure, i.e., porous Co3 04 Nanowires, core' and ultra-high thin Mn 02 nanosheet metal shell 'formation The strong synergistic effect of this special branched-co (OH) 2 on the supercapacitors and other electrochemical devices The invention has the advantages of good application prospect, 5, adopting two-step anodised aluminium oxide as a template, the tetrathiurite as a precursor, and obtaining a branched MoS2 nano tube by a simple thermal decomposition reaction, The branch-like MoS2 nanotubes were studied by scanning electron microscope and high-resolution transmission electron microscope. The possible formation mechanism of the structure. The morphology of the tetrathiurates in the template holes determines the morphology of the nanotubes. The pore size and length of the nanotubes depend on the pore size and the thickness of the alumina template, and the thickness of the pipe wall is determined by the nanopore wall of the alumina template. The micro-morphology of the bamboo section of the nanotubes was found to be affected by the use of a large-diameter alumina template (200nm).
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM53;TB383.1

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 秦剛;何鳳英;郭光華;;原位法制備通孔AAO模板的原理和工藝[J];半導(dǎo)體技術(shù);2010年09期

2 陳東;宋國君;彭智;佘希林;李建江;韓萍;;簡單蝕刻法制備具有可控高度的金屬納米線陣列[J];功能材料與器件學(xué)報(bào);2007年04期

3 陳仲欣;盧紅斌;;石墨烯-聚苯胺雜化超級電容器電極材料[J];高等學(xué);瘜W(xué)學(xué)報(bào);2013年09期

4 鄭浩;高健;王少飛;李泓;;鋰電池基礎(chǔ)科學(xué)問題(Ⅵ)——離子在固體中的輸運(yùn)[J];儲能科學(xué)與技術(shù);2013年06期

5 楊e,

本文編號:2364897


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2364897.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶10e02***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com