天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電力論文 >

鋰離子電池錫基復合負極與富鋰層狀正極材料的制備與電化學性能表征

發(fā)布時間:2018-11-21 07:38
【摘要】:近年來,由于鋰離子電池具有能量密度高、比容量高和質(zhì)量輕等優(yōu)點,在手機、筆記本電腦等小型電子產(chǎn)品中得到了廣泛的應用。隨著電動汽車與電動工具等產(chǎn)業(yè)的迅猛發(fā)展,迫切需要開發(fā)具有更高功率密度和能量密度、更長循環(huán)壽命的鋰離子電池作為動力支持。作為可逆充放電的主體,電極材料是新型鋰離子電池成功開發(fā)的關鍵。本論文的研究內(nèi)容集中于新型鋰離子電池負極二氧化錫納米材料和正極富鋰層狀材料的合成、優(yōu)化及電化學性能表征。 論文第一章中主要介紹了鋰離子電池的組成結構、工作原理和發(fā)展歷史,并展望了鋰離子及動力型電池的應用前景。文中首先分別對鋰離子電池的正負極材料進行了總體概述,然后著重論述了兩種電極材料(金紅石型SnO2負極材料和富鋰正極材料xLi2MnO3-(l-x)LiMO2(M=Co, Ni, Mn))的結構、儲鋰機理、合成以及改性的研究現(xiàn)狀。 論文在第二章簡要介紹了實驗工作中所涉及的實驗試劑、方法和儀器。此外,還特別介紹了2025型扣式電池的組裝方法,以及常用的材料結構、形貌和成分等表征手段和電化學測試方法。 論文第三章中,采用氧化石墨烯作為氧化劑一步快速水熱法合成了SnO2/石墨烯納米復合材料,通過調(diào)節(jié)氧化石墨烯的配比,成功地制備出SnO2/SnO兩相復合物和純相SnO2,并研究了氧化石墨烯與亞錫離子比例對最終產(chǎn)物的形貌、結構和電化學性能的影響。結果表明,當氧化石墨烯質(zhì)量分數(shù)為32%時,合成的SnO2/石墨烯納米復合材料表現(xiàn)出了高的循環(huán)穩(wěn)定性,經(jīng)過90次循環(huán)后,放電比容量仍然保持在525mAh/g,平均容量損失僅為0.3%。 論文第四章中,采用一步快速燃燒法合成了富鋰正極材料,并分別應用有機酸尿素和檸檬酸作為燃料,系統(tǒng)考察了兩種燃料對所制備材料的結構、形貌和電化學性能的影響;同時,對應用不同燃料所制備的材料的電化學性能差異的原因進行了細致分析。結果表明,尿素燃燒法合成的富鋰正極材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2綜合電化學性能最佳。0.1C電流倍率下首次放電比容量為264.6mAh/g,1C下最高放電比容量為167.5mAh/g,經(jīng)過100次循環(huán)后容量為150.3mAh/g,保持率達90%。
[Abstract]:In recent years, lithium-ion batteries have been widely used in small electronic products such as mobile phones, laptops and other small electronic products because of their advantages of high energy density, high specific capacity and light quality. With the rapid development of electric vehicles and power tools, it is urgent to develop lithium ion batteries with higher power density and energy density and longer cycle life as power support. As the main body of reversible charge and discharge, electrode material is the key to the successful development of new lithium ion battery. This paper focuses on the synthesis, optimization and electrochemical characterization of novel anode tin dioxide nanomaterials and positively rich lithium layered materials for lithium-ion batteries. In the first chapter, the structure, working principle and development history of Li-ion battery are introduced, and the application prospect of Li-ion and power battery is prospected. In this paper, the cathode materials of lithium ion batteries are summarized, and the structure of two kinds of electrode materials (rutile SnO2 anode and lithium-rich xLi2MnO3- (l-x) LiMO2, Ni, Mn) are discussed. Research status of lithium storage mechanism, synthesis and modification. In the second chapter, the reagents, methods and instruments involved in the experiment are briefly introduced. In addition, the assembly method of 2025 type button battery, the usual characterization methods, such as structure, morphology and composition, as well as electrochemical measurement methods are also introduced. In chapter 3, SnO2/ graphene nanocomposites were synthesized by one step hydrothermal method using graphene oxide as oxidant. By adjusting the proportion of graphene oxide, SnO2/SnO two-phase composites and pure phase SnO2, were successfully prepared. The effect of the ratio of graphene oxide to tin oxide on the morphology, structure and electrochemical properties of the final product was studied. The results show that when the mass fraction of graphene oxide is 32, the synthesized SnO2/ graphene nanocomposites exhibit high cyclic stability. After 90 cycles, the discharge specific capacity remains at 525mAh/ g. The average capacity loss is only 0.3%. In chapter 4, Lithium rich cathode materials were synthesized by one step rapid combustion method. The effects of organic acid urea and citric acid on the structure, morphology and electrochemical properties of the materials were investigated. At the same time, the reasons for the difference of electrochemical properties of the materials prepared by different fuels were analyzed in detail. The results show that the lithium rich cathode material Li [Li0.2Mn0.54Ni0.13Co0.13] O2 synthesized by urea combustion has the best comprehensive electrochemical performance, and the first discharge specific capacity is 264.6 mAh/ g at 0.1C current ratio. The maximum discharge capacity at 1C is 167.5 mg / g, and after 100 cycles the capacity is 150.3 mg / g, and the retention rate is 90%.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM912;TB33

【參考文獻】

相關期刊論文 前10條

1 盧俊彪,唐子龍,張中太,沈萬慈;鋰離子二次電池正極材料晶體結構與電化學性能[J];稀有金屬材料與工程;2005年11期

2 趙煜娟,陳彥彬,杜翠薇,余仲寶,劉慶國;鋰離子蓄電池正極材料LiNi_(1-y)Co_yO_2的研究[J];電源技術;2002年01期

3 李昱樹;薛衛(wèi)東;唐瑛材;胡友作;蔣奉君;;層狀鋰鎳鈷錳氧化物的研究進展[J];電子元件與材料;2011年09期

4 李智敏 ,仇衛(wèi)華 ,曹全喜 ,張華;LiMn_2O_4正極材料高溫電化學性能的研究[J];硅酸鹽學報;2004年01期

5 李節(jié)賓,侯毓悌,張贊鋒,薛蓉麗;鋰離子電池正極材料的發(fā)展研究[J];火工品;2003年02期

6 衛(wèi)敏,路艷羅,楊文勝,段雪;鋰離子二次電池錳系正極材料[J];化學通報;2002年08期

7 趙煜娟;馮海蘭;趙春松;孫召琴;;鋰離子電池富鋰正極材料xLi_2MnO_3·(1-x)LiMO_2(M=Co,Fe,Ni_(1/2)Mn_(1/2)…)的研究進展[J];無機材料學報;2011年07期

8 唐定國;江衛(wèi)軍;;鋰離子電池正極材料現(xiàn)狀與發(fā)展趨勢[J];新材料產(chǎn)業(yè);2006年09期

9 智林杰;方巖;康飛宇;;用于鋰離子電池的石墨烯材料——儲能特性及前景展望[J];新型炭材料;2011年01期

10 鄭雪萍,劉勝林,曲選輝;鋰離子電池正極材料的研究現(xiàn)狀[J];稀有金屬與硬質(zhì)合金;2005年03期

,

本文編號:2346333

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2346333.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶58896***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com