小型獨(dú)立太陽(yáng)能發(fā)電系統(tǒng)設(shè)計(jì)
[Abstract]:With the acceleration of modernization in the world, the consumption of energy is rising, and the limited conventional energy is far from being able to meet the needs of industry, life and national defense construction. Finding alternative new sources of energy is the only way to ease the situation. The ubiquitous and inexhaustible solar energy is the focus of attention. Solar power plant can be divided into two types: independent and grid-connected, and its design requirements are different. The solar power generation device designed in this paper belongs to the independent generation system which does not connect to the power grid. Based on the analysis of the global solar power generation trend, this paper introduces the structure of the commonly used stand-alone power generation system. Firstly, the characteristics of solar cells are analyzed and a mathematical model is built to simulate the performance of solar cells. The influence of the change of environment on the performance of solar cells is tested. On the one hand, it is verified that the output of the solar cell has the nonlinear characteristic of varying with the environmental parameters, and the necessity of tracking the maximum power point of the cell in real time is also proved. The advantages and disadvantages of several MPPT control schemes are analyzed and compared. The Boost circuit is used as the application topology of the maximum power point tracking (MPPT), and the duty cycle interference observation is used as the tracking control method in this paper. The push-pull forward topology with magnetic bias suppression is used in the booster module and the non-isolated full-bridge inverter topology is used in the inverter part. According to the structure principle of push-pull forward circuit, the parameters of rectifier diode, clamping capacitor, power switch tube and filter are calculated and selected, and the high frequency transformer is selected according to the main circuit requirements. The transformer core type and turn ratio are calculated and designed. The isolated feedback circuit is composed of PC817 and TL431. The hardware design of the rear stage full-bridge inverter includes switch tube, filter device and absorption buffer circuit to improve the switching performance. The software design is based on the development software CCS3.3 of DSP2812. The flow chart of battery charging, main program, PWM subroutine, AD sampling and interrupt subroutine with maximum power point tracking effect is given. Finally, the operation and debugging of the whole system is completed, and the feasibility of the designed system is proved and the requirements of each index are met.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛陽(yáng);張佳棟;;自適應(yīng)變步長(zhǎng)占空比擾動(dòng)法在光伏發(fā)電MPPT中的應(yīng)用[J];上海電力學(xué)院學(xué)報(bào);2011年06期
2 孫殿忠;桂存兵;;400VA光伏離網(wǎng)純正弦波逆變電源的研制[J];低壓電器;2010年11期
3 周雪松;宋代春;馬幼捷;郭潤(rùn)睿;程德樹;;光伏并網(wǎng)逆變器的控制策略[J];華東電力;2010年01期
4 張揚(yáng);楊浩然;;光伏并網(wǎng)逆變器控制算法的研究[J];低壓電器;2009年19期
5 廖志凌;阮新波;;獨(dú)立光伏發(fā)電系統(tǒng)能量管理控制策略[J];中國(guó)電機(jī)工程學(xué)報(bào);2009年21期
6 羅曉英;謝利理;晁寧;;基于太陽(yáng)光照模型的最大功率點(diǎn)跟蹤算法[J];計(jì)算機(jī)測(cè)量與控制;2009年02期
7 曾遠(yuǎn)躍;;適用于獨(dú)立光伏系統(tǒng)的正弦波逆變電源研制[J];機(jī)電技術(shù);2008年04期
8 周德佳;趙爭(zhēng)鳴;袁立強(qiáng);馮博;趙志強(qiáng);;具有改進(jìn)最大功率跟蹤算法的光伏并網(wǎng)控制系統(tǒng)及其實(shí)現(xiàn)[J];中國(guó)電機(jī)工程學(xué)報(bào);2008年31期
9 饒建業(yè);李永東;李謙;沈智宇;;太陽(yáng)能電池陣模擬器的設(shè)計(jì)和研究[J];電力電子技術(shù);2007年09期
10 謝文濤;張東;呂征宇;;光伏發(fā)電系統(tǒng)中前端DC/DC變換器的設(shè)計(jì)[J];機(jī)電工程;2007年09期
相關(guān)碩士學(xué)位論文 前3條
1 王武軍;太陽(yáng)能光伏發(fā)電系統(tǒng)最大功率點(diǎn)跟蹤研究[D];陜西師范大學(xué);2009年
2 劉偉晗;600W 28VDC/360VDC推挽正激變換器的研制及偏磁研究[D];南京航空航天大學(xué);2006年
3 戴衛(wèi)力;推挽正激及其軟開關(guān)電路的研究與實(shí)現(xiàn)[D];南京航空航天大學(xué);2004年
,本文編號(hào):2321802
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2321802.html