天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電力論文 >

共懸浮繞組式無(wú)軸承開(kāi)關(guān)磁阻電機(jī)的基礎(chǔ)研究

發(fā)布時(shí)間:2018-11-06 21:17
【摘要】:摘要:無(wú)軸承開(kāi)關(guān)磁阻電機(jī)(BSRM)兼具了磁軸承與開(kāi)關(guān)磁阻電機(jī)(SRM)的特點(diǎn),不但可避免傳統(tǒng)機(jī)械軸承的缺點(diǎn),還充分利用了開(kāi)關(guān)磁阻電機(jī)自身的優(yōu)點(diǎn),因其在高速領(lǐng)域的應(yīng)用價(jià)值得到了各國(guó)學(xué)者廣泛的研究。傳統(tǒng)結(jié)構(gòu)雙繞組BSRM懸浮繞組數(shù)量多,而且電機(jī)運(yùn)行中,懸浮繞組要隨主繞組的切換在各相間不斷切換,增加了功率電路中開(kāi)關(guān)器件的個(gè)數(shù)及控制的復(fù)雜性。 本文提出一種新型的共懸浮繞組式BSRM繞組結(jié)構(gòu),不論幾相電機(jī),均只需要2套懸浮繞組實(shí)現(xiàn)徑向懸浮控制。而且,電機(jī)在整個(gè)運(yùn)行過(guò)程中,不需要切換懸浮繞組,功率器件個(gè)數(shù)減少為原來(lái)的三分之一,降低了系統(tǒng)成本和控制復(fù)雜性。 首先,對(duì)提出的共懸浮繞組式BSRM的電磁特性進(jìn)行了有限元計(jì)算,分析了其懸浮性能及懸浮繞組電流對(duì)旋轉(zhuǎn)轉(zhuǎn)矩的影響,以及磁飽和對(duì)懸浮性能及旋轉(zhuǎn)轉(zhuǎn)矩的影響等,證明了共懸浮繞組式無(wú)軸承開(kāi)關(guān)磁阻電機(jī)在飽和情況下依然懸浮可控;與雙繞組結(jié)構(gòu)BSRM進(jìn)行了對(duì)比分析,驗(yàn)證了其在懸浮與旋轉(zhuǎn)方面具有同樣的特性。 其次,建立了共懸浮繞組式BSRM的等效磁路模型,求取了主繞組與懸浮繞組的自感及互感表達(dá)式;提出以定子極機(jī)械位置為參考考慮轉(zhuǎn)子徑向偏移對(duì)定轉(zhuǎn)子極間氣隙變化的影響,推導(dǎo)了定轉(zhuǎn)子極間氣隙長(zhǎng)度與轉(zhuǎn)子徑向偏移位置、定子極位置的數(shù)學(xué)關(guān)系;采用直線磁路結(jié)合邊緣橢圓形磁路的方法求取了氣隙磁導(dǎo);進(jìn)一步推導(dǎo)出了徑向力、靜態(tài)轉(zhuǎn)矩與繞組電流及轉(zhuǎn)子旋轉(zhuǎn)位置角之間的數(shù)學(xué)關(guān)系。與有限元仿真結(jié)果進(jìn)行比較,驗(yàn)證了徑向力及轉(zhuǎn)矩?cái)?shù)學(xué)模型的準(zhǔn)確性。 考慮轉(zhuǎn)子偏心位移對(duì)定轉(zhuǎn)子極間氣隙磁導(dǎo)的影響,提出通過(guò)近似分析法求得繞組電感,從而建立了考慮轉(zhuǎn)子偏心位移影響的共懸浮繞組式BSRM徑向力解析模型,得到繞組電流、轉(zhuǎn)子旋轉(zhuǎn)位置、轉(zhuǎn)子徑向偏移位置與轉(zhuǎn)子所受徑向力的數(shù)學(xué)關(guān)系。該數(shù)學(xué)模型的計(jì)算結(jié)果與有限元仿真結(jié)果的一致性證實(shí)了該解析模型的正確性。 然后,針對(duì)共懸浮繞組式BSRM徑向懸浮力系統(tǒng)的嚴(yán)重非線性,提出了基于逆系統(tǒng)方法的徑向力非線性控制方法,依據(jù)動(dòng)態(tài)性能要求調(diào)節(jié)控制參數(shù),實(shí)現(xiàn)了徑向力控制的動(dòng)態(tài)線性化,對(duì)不同動(dòng)態(tài)性能指標(biāo)下精確的轉(zhuǎn)子徑向位移控制進(jìn)行仿真,驗(yàn)證了控制方案的有效性。 最后,搭建了共懸浮繞組式BSRM實(shí)驗(yàn)平臺(tái),對(duì)該電機(jī)進(jìn)行了懸浮旋轉(zhuǎn)試驗(yàn),證明了共懸浮繞組式BSRM的懸浮可控及優(yōu)良性能,為其進(jìn)一步深入研究奠定了基礎(chǔ)。
[Abstract]:Abstract: the bearingless switched reluctance motor (BSRM) has the characteristics of both the magnetic bearing and the switched reluctance motor (SRM), which can not only avoid the shortcomings of the traditional mechanical bearings, but also make full use of the advantages of the switched reluctance motor itself. Because of its application value in the field of high-speed has been widely studied by scholars all over the world. The number of BSRM levitation windings with traditional double windings is large, and in the operation of the motor, the levitation windings have to switch between phases with the main windings, which increases the number of switching devices and the complexity of control in power circuits. In this paper, a new type of common suspension winding BSRM winding structure is proposed. No matter how many phase motors are used, only two sets of suspension windings are required to realize radial suspension control. Moreover, in the whole operation process of the motor, there is no need to switch the suspension winding, and the number of power devices is reduced to the original 1/3, which reduces the system cost and control complexity. Firstly, the electromagnetic characteristics of the proposed co-suspension winding BSRM are calculated by finite element method, and the influence of the levitation performance, the current of the suspension winding on the rotating torque, and the effect of magnetic saturation on the suspension performance and the rotating torque are analyzed. It is proved that the bearingless switched reluctance motor can still be suspended and controlled under saturation condition. Compared with BSRM with double windings, it is verified that it has the same characteristics in levitation and rotation. Secondly, the equivalent magnetic circuit model of co-suspension winding BSRM is established, and the expressions of self-inductance and mutual inductance between main winding and suspension winding are obtained. Taking the mechanical position of stator pole as reference, the influence of rotor radial offset on air gap between stator and rotor is considered, and the mathematical relationship between air gap length between stator and rotor radial offset position and stator pole position is deduced. The air-gap magnetic conductance is obtained by combining the linear magnetic circuit with the edge elliptical magnetic circuit, and the mathematical relationship between the radial force, the static torque and the winding current and the rotor rotation angle is derived. Compared with the finite element simulation results, the accuracy of the mathematical model of radial force and torque is verified. Considering the influence of rotor eccentricity displacement on the magnetic conductance of air gap between stator and rotor poles, the winding inductance is obtained by approximate analysis method, and an analytical model of BSRM radial force considering rotor eccentric displacement is established, and the winding current is obtained. The mathematical relationship between rotor rotation position, rotor radial offset position and rotor radial force. The correctness of the analytical model is verified by the agreement between the calculation results and the finite element simulation results. Then, aiming at the serious nonlinearity of BSRM radial suspension force system, a radial force nonlinear control method based on inverse system method is proposed, and the control parameters are adjusted according to the dynamic performance requirements. The dynamic linearization of radial force control is realized. The accurate radial displacement control of rotor under different dynamic performance indexes is simulated and the validity of the control scheme is verified. Finally, the co-suspension winding BSRM experimental platform is built, and the suspension rotation test of the motor is carried out, which proves the suspension controllability and excellent performance of the co-suspension winding BSRM, which lays a foundation for further research.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM352

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王秋蓉;葛寶明;;無(wú)軸承開(kāi)關(guān)磁阻電機(jī)的轉(zhuǎn)矩與徑向力特性分析[J];北京交通大學(xué)學(xué)報(bào);2007年02期

2 趙旭升;鄧智泉;汪波;;一種磁懸浮開(kāi)關(guān)磁阻電機(jī)用軸向徑向磁軸承[J];北京航空航天大學(xué)學(xué)報(bào);2011年08期

3 劉國(guó)海,孫玉坤,張浩,趙文祥,沈躍;基于神經(jīng)網(wǎng)絡(luò)逆系統(tǒng)的磁懸浮開(kāi)關(guān)磁阻電動(dòng)機(jī)的解耦控制[J];電工技術(shù)學(xué)報(bào);2005年09期

4 曹鑫;鄧智泉;楊鋼;王曉琳;;新型無(wú)軸承開(kāi)關(guān)磁阻電機(jī)雙相導(dǎo)通數(shù)學(xué)模型[J];電工技術(shù)學(xué)報(bào);2006年04期

5 孫玉坤;劉羨飛;王德明;茅靖峰;;基于有限元分析的磁懸浮開(kāi)關(guān)磁阻電機(jī)數(shù)學(xué)模型的全角度拓展[J];電工技術(shù)學(xué)報(bào);2007年09期

6 王世山;劉澤遠(yuǎn);鄧智泉;周愛(ài)民;;無(wú)軸承開(kāi)關(guān)磁阻電機(jī)動(dòng)、靜態(tài)電感耦合的數(shù)學(xué)擬合[J];電工技術(shù)學(xué)報(bào);2007年12期

7 王曉琳;任新宇;鄧智泉;廖啟新;;短路容錯(cuò)控制在多相無(wú)軸承永磁同步電機(jī)中的可行性分析[J];電工技術(shù)學(xué)報(bào);2012年03期

8 范冬;楊艷;鄧智泉;王曉琳;;無(wú)軸承高速開(kāi)關(guān)磁阻電機(jī)設(shè)計(jì)中的關(guān)鍵問(wèn)題[J];電機(jī)與控制學(xué)報(bào);2006年06期

9 王秋蓉;葛寶明;;無(wú)軸承開(kāi)關(guān)磁阻電機(jī)磁場(chǎng)及力特性的分析[J];電機(jī)與控制學(xué)報(bào);2007年03期

10 楊艷;鄧智泉;曹鑫;楊鋼;王曉琳;;無(wú)軸承開(kāi)關(guān)磁阻電機(jī)徑向電磁力模型[J];電機(jī)與控制學(xué)報(bào);2009年03期

,

本文編號(hào):2315490

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2315490.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶50572***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com