天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

基于大數(shù)據(jù)的運(yùn)檢培訓(xùn)技術(shù)研究

發(fā)布時間:2018-11-06 15:12
【摘要】:隨著電網(wǎng)建設(shè)的快速發(fā)展,電網(wǎng)系統(tǒng)的規(guī)模與復(fù)雜程度也日益增大,各信息系統(tǒng)已經(jīng)積累了大量輸變電設(shè)備狀態(tài)信息數(shù)據(jù)。這給運(yùn)檢培訓(xùn)帶來新的問題與挑戰(zhàn)。而傳統(tǒng)的人工教學(xué)培訓(xùn)具有成本昂貴、培訓(xùn)效果不高的特點(diǎn)。因此推動運(yùn)檢培訓(xùn)向標(biāo)準(zhǔn)化、高效化、網(wǎng)絡(luò)化、形象化發(fā)展已經(jīng)是未來的趨勢。 隨著電網(wǎng)設(shè)備運(yùn)行狀態(tài)檢測技術(shù)的發(fā)展,運(yùn)檢決策人員所掌握的設(shè)備狀態(tài)信息量迅速增長,另一方面,信息的組成從以文字和數(shù)字等結(jié)構(gòu)化數(shù)據(jù)為主發(fā)展到圖像和視頻等非結(jié)構(gòu)化數(shù)據(jù)占有數(shù)據(jù)量的絕大部分。隨著機(jī)器人和無人機(jī)等自動檢測平臺在輸變電巡檢中的應(yīng)用,非結(jié)構(gòu)化數(shù)據(jù)的分析需求將大大增加,這些數(shù)據(jù)的特征和規(guī)模導(dǎo)致依靠專家的人工分析已經(jīng)無法及時處理,制約了上述先進(jìn)檢測手段在運(yùn)檢決策中發(fā)揮作用。 本文通過研究基于輸變電設(shè)備在線監(jiān)測、帶電檢測等多源異構(gòu)數(shù)據(jù)的檢測、狀態(tài)評價(jià)與檢修技能的培訓(xùn)與考核技術(shù),實(shí)現(xiàn)培訓(xùn)系統(tǒng)與狀態(tài)評價(jià)系統(tǒng)的數(shù)據(jù)共享和知識共享,提高培訓(xùn)水平和效率。本文針對運(yùn)檢多源異構(gòu)檢測數(shù)據(jù),研究故障與檢測數(shù)據(jù)間關(guān)聯(lián)性,提取故障特征信息,并通過對變壓器、斷路器典型故障案例庫建模與分析,紅外影像庫和超聲超高頻檢測圖譜庫的建模與分析,建立典型故障庫和紅外檢測圖譜庫在線培訓(xùn)系統(tǒng),供學(xué)員學(xué)習(xí)。最后基于多源異構(gòu)數(shù)據(jù)、故障案例庫建立基于大數(shù)據(jù)的輸變電運(yùn)檢培訓(xùn)系統(tǒng),并開發(fā)手機(jī)應(yīng)用,方便學(xué)員學(xué)習(xí)。 總體研究表明,本文所研究的基于大數(shù)據(jù)的運(yùn)檢培訓(xùn)技術(shù),為運(yùn)檢培訓(xùn)提供了一種新方法,可有效提高設(shè)備故障診斷和檢修決策水平,能夠產(chǎn)生顯著的經(jīng)濟(jì)和安全效益。
[Abstract]:With the rapid development of power grid construction, the scale and complexity of power grid system is increasing day by day. The information system has accumulated a large number of information data of transmission and transformation equipment. This brings new problems and challenges to operation and inspection training. The traditional manual teaching and training has the characteristics of high cost and low training effect. Therefore, it is the future trend to promote the standardization, high efficiency, network and visualization of operation and inspection training. With the development of power network equipment operating state detection technology, the amount of equipment state information grasped by operation inspection decision makers increases rapidly, on the other hand, From structured data such as text and number to unstructured data such as image and video, the information consists of most of the data. With the application of automatic detection platform such as robot and UAV in power transmission and transformation inspection, the demand for analysis of unstructured data will be greatly increased. The characteristics and scale of these data make it impossible to deal with them in time depending on the manual analysis of experts. It restricts the above advanced detection means to play a role in the operation and inspection decision. In this paper, the data sharing and knowledge sharing between the training system and the condition evaluation system are realized through the research of the multi-source heterogeneous data detection, such as on-line monitoring of transmission and transformation equipment, live detection and so on, as well as the training and examination technology of condition evaluation and maintenance skills. Improve training level and efficiency. In this paper, we study the relationship between fault and detection data, extract fault characteristic information, and model and analyze the typical fault database of transformer and circuit breaker. The modeling and analysis of infrared image library and ultrasonic ultra-high frequency test atlas library are carried out, and the online training system of typical fault database and infrared detection atlas library is established for students to learn. Finally, based on the multi-source and heterogeneous data, the fault case database is used to establish the training system of transmission and substation operation based on big data, and the mobile phone application is developed to facilitate the students to learn. The overall research shows that the training technology based on big data provides a new method for operation and inspection training, which can effectively improve the level of equipment fault diagnosis and maintenance decision, and can produce significant economic and safety benefits.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP311.13;TM76

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張帆;金紅核;袁成;胡炎;邰能靈;林尉;陳康銘;崔鵬程;;變電站仿真培訓(xùn)的智能評估系統(tǒng)[J];電力科學(xué)與技術(shù)學(xué)報(bào);2009年04期

2 劉子介,解建倉,楊華;基于事例推理的電網(wǎng)事故處理專家系統(tǒng)[J];電測與儀表;2005年05期

3 廖瑞金;王謙;駱?biāo)技?廖玉祥;孫才新;;基于模糊綜合評判的電力變壓器運(yùn)行狀態(tài)評估模型[J];電力系統(tǒng)自動化;2008年03期

4 杜一,郁惟鏞,文華龍;采用神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)的變電站故障診斷系統(tǒng)[J];電力系統(tǒng)及其自動化學(xué)報(bào);2003年05期

5 趙冬梅,郭銳,徐開理,高曙;電網(wǎng)故障診斷專家系統(tǒng)的一種實(shí)現(xiàn)[J];電力自動化設(shè)備;2000年04期

6 劉青松,夏道止;基于正反向推理的電力系統(tǒng)故障診斷專家系統(tǒng)[J];電網(wǎng)技術(shù);1999年09期

7 劉有為,李光范,高克利,杜彥明,張勤,牛曉民,孫維本;制訂《電氣設(shè)備狀態(tài)維修導(dǎo)則》的原則框架[J];電網(wǎng)技術(shù);2003年06期

8 杜一,張沛超,郁惟鏞;基于事例和規(guī)則混合推理的變電站故障診斷系統(tǒng)[J];電網(wǎng)技術(shù);2004年01期

9 黃志蘭;丁圣勇;楊國良;羅頌鋒;;基于MapReduce的PCA異常流量檢測系統(tǒng)實(shí)現(xiàn)[J];電信科學(xué);2010年06期

10 林云;郜麗鵬;;基于灰色關(guān)聯(lián)和證據(jù)理論的故障診斷方法[J];電子測量與儀器學(xué)報(bào);2009年07期



本文編號:2314651

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2314651.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3dcde***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com