天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電力論文 >

配電網(wǎng)理論線損率的分析與預(yù)測(cè)

發(fā)布時(shí)間:2021-02-24 10:56
  近年來(lái),隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,人們對(duì)電網(wǎng)運(yùn)行水平提出了更高的要求,大規(guī)模的降損措施被應(yīng)用到電網(wǎng),對(duì)于改善電源浪費(fèi)起到了積極作用。再者,隨著全球能源危機(jī)的加劇,十二五計(jì)劃提出堅(jiān)持把建設(shè)資源節(jié)約型、環(huán)境友好型社會(huì)作為加快轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式的重要著力點(diǎn)。為了積極響應(yīng)黨中央的政策,建立節(jié)約型社會(huì),最大限度地降低電能在傳輸過(guò)程中產(chǎn)生的損耗,開展線損預(yù)測(cè)研究變得尤為重要。配電網(wǎng)連接著發(fā)電系統(tǒng)、輸電系統(tǒng)和用戶,隨著電力系統(tǒng)的快速發(fā)展,配電網(wǎng)線損的不可避免性、復(fù)雜性和不確定性給電力系統(tǒng)的安全運(yùn)行及電能質(zhì)量帶來(lái)了嚴(yán)峻的挑戰(zhàn)。因此,準(zhǔn)確地對(duì)線損率進(jìn)行預(yù)測(cè),幫助相關(guān)工作人員制定符合現(xiàn)實(shí)情況的考核指標(biāo)和規(guī)劃,有效發(fā)揮電能價(jià)值,已經(jīng)成為了當(dāng)前亟需分析和解決的實(shí)際課題。深入研究線損率預(yù)測(cè),對(duì)提高電力系統(tǒng)協(xié)調(diào)運(yùn)行能力,促進(jìn)電能持續(xù)健康發(fā)展具有十分重要的意義;跉v史理論線損率數(shù)據(jù),本文對(duì)理論線損率展開了以下研究:1.神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型能較好的應(yīng)對(duì)序列的波動(dòng)性且具有良好的精準(zhǔn)度,因此該非線性模型被廣泛的應(yīng)用。利用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型對(duì)理論線損率進(jìn)行預(yù)測(cè),利用馬爾可夫?qū)碚摼損率預(yù)測(cè)誤差進(jìn)行修正處理,建立RBF-馬爾可夫模型,預(yù)測(cè)理論線損率。2.SVM(支持向量機(jī))收斂速度快,學(xué)習(xí)能力強(qiáng),泛化能力好,能有效預(yù)測(cè)序列的變化趨勢(shì)。以支持向量機(jī)原理為基礎(chǔ),建立支持向量機(jī)回歸模型,實(shí)現(xiàn)理論線損率直接預(yù)測(cè)。3.對(duì)支持向量機(jī)的模型參數(shù)優(yōu)化問(wèn)題進(jìn)行研究。分析懲罰因子C和核參數(shù)σ的作用及對(duì)支持向量機(jī)性能的影響。運(yùn)用遺傳優(yōu)化算法,提出基于遺傳算法優(yōu)化支持向量機(jī)預(yù)測(cè)模型(GA-SVM),解決SVM建模時(shí)存在的弊端,并利用GA-SVM預(yù)測(cè)模型實(shí)現(xiàn)理論線損率預(yù)測(cè)。4.結(jié)合RBF-Markov模型和遺GA-SVM模型,研究理論線損率的概率預(yù)測(cè)模型。針對(duì)概率預(yù)測(cè)模型中求解概率密度難這一關(guān)鍵問(wèn)題,采用非參數(shù)核密度估計(jì)方法估計(jì)理論線損率的概率密度函數(shù),最終建立概率預(yù)測(cè)模型求得置信區(qū)間。

【學(xué)位授予單位】:安徽工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM732
文章目錄
摘要
ABSTRACT
第1章 緒論
    1.1 研究背景及意義
        1.1.1 研究背景
        1.1.2 研究的目的和意義
    1.2 研究現(xiàn)狀
    1.3 本文工作
第2章 計(jì)算和分析配電網(wǎng)理論線損
    2.1 配電網(wǎng)線損率的基本概念及組成
        2.1.1 線損定義和組成
        2.1.2 線損率相關(guān)概念
    2.2 配電網(wǎng)理論線損的計(jì)算方法比較分析
        2.2.1 均方根電流法
        2.2.2 最大電流法(損失因數(shù)法)
        2.2.3 平均電流法
        2.2.4 等值電阻法
        2.2.5 回歸分析法
        2.2.6 前推回代法
        2.2.7 動(dòng)態(tài)潮流法
        2.2.8 智能算法
    2.3 配電網(wǎng)線損率影響因數(shù)分析
        2.3.1 配電網(wǎng)運(yùn)行電壓對(duì)線損率影響
        2.3.2 功率因數(shù)對(duì)線損率影響
        2.3.3 導(dǎo)線對(duì)線損率影響
        2.3.4 變壓器對(duì)線損率影響
        2.3.5 三相負(fù)荷不平衡對(duì)線損率影響
        2.3.6 管理措施對(duì)線損率影響
    2.4 小結(jié)
第3章 基于RBF神經(jīng)網(wǎng)絡(luò)馬爾可夫模型理論線損率預(yù)測(cè)
    3.1 引言
    3.2 神經(jīng)網(wǎng)絡(luò)模型
        3.2.1 人工神經(jīng)網(wǎng)絡(luò)模型
        3.2.2 RBF神經(jīng)網(wǎng)絡(luò)模型
    3.3 馬爾可夫理論
        3.3.1 馬爾可夫鏈
        3.3.2 馬爾可夫的性質(zhì)
        3.3.3 馬爾可夫模型
    3.4 基于RBF神經(jīng)網(wǎng)絡(luò)-馬爾可夫模型的理論線損率預(yù)測(cè)
        3.4.1 RBF-馬爾可夫模型構(gòu)建
        3.4.2 算例分析
    3.5 小結(jié)
第4章 基于遺傳優(yōu)化的支持向量機(jī)理論線損率預(yù)測(cè)
    4.1 引言
    4.2 統(tǒng)計(jì)學(xué)習(xí)理論基礎(chǔ)
        4.2.1 VC維和推廣性的界
        4.2.2 結(jié)構(gòu)風(fēng)險(xiǎn)最小化
    4.3 支持向量機(jī)模型
        4.3.1 支持向量回歸原理
        4.3.2 核函數(shù)
        4.3.3 支持向量機(jī)模型參數(shù)
    4.4 遺傳算法優(yōu)化支持向量機(jī)建模
        4.4.1 遺傳算法原理
        4.4.2 遺傳優(yōu)化支持向量機(jī)模型構(gòu)建
    4.5 算例分析
        4.5.1 GA-SVM模型預(yù)測(cè)分析
        4.5.2 仿真誤差對(duì)比
    4.6 小結(jié)
第5章 理論線損率預(yù)測(cè)結(jié)果不確定性研究
    5.1 引言
    5.2 非參數(shù)估計(jì)理論介紹
        5.2.1 直方圖方法
        5.2.2 Rosenblatt估計(jì)
        5.2.3 非參數(shù)核密度估計(jì)概念
        5.2.4 密度估計(jì)優(yōu)良性標(biāo)準(zhǔn)及性質(zhì)
        5.2.5 核函數(shù)的選擇
        5.2.6 窗寬的選擇
    5.3 置信區(qū)間非參數(shù)估計(jì)
        5.3.1 理論線損率預(yù)測(cè)誤差概率分布
        5.3.2 置信區(qū)間估計(jì)
    5.4 實(shí)例分析
        5.4.1 確定性預(yù)測(cè)結(jié)果
        5.4.2 求取置信區(qū)間
    5.5 小結(jié)
第6章 總結(jié)與展望
    6.1 論文工作結(jié)論
    6.2 論文工作展望
參考文獻(xiàn)
攻讀碩士期間研究成果
致謝
 

【參考文獻(xiàn)】

相關(guān)期刊論文 前4條

1 牛東曉;劉達(dá);陳廣娟;馮義;;基于遺傳優(yōu)化的支持向量機(jī)小時(shí)負(fù)荷滾動(dòng)預(yù)測(cè)[J];電工技術(shù)學(xué)報(bào);2007年06期

2 杜穎;盧繼平;李青;鄧穎玲;;基于最小二乘支持向量機(jī)的風(fēng)電場(chǎng)短期風(fēng)速預(yù)測(cè)[J];電網(wǎng)技術(shù);2008年15期

3 聶相田;李東亮;;基于GM(1,1)-馬爾科夫模型的城市用水量預(yù)測(cè)[J];華北水利水電學(xué)院學(xué)報(bào);2011年02期

4 許少華;何新貴;王兵;;一種時(shí)變輸入輸出過(guò)程神經(jīng)元網(wǎng)絡(luò)及學(xué)習(xí)算法研究[J];控制與決策;2007年12期

相關(guān)博士學(xué)位論文 前1條

1 夏樂(lè)天;馬爾可夫鏈預(yù)測(cè)方法及其在水文序列中的應(yīng)用研究[D];河海大學(xué);2005年

相關(guān)碩士學(xué)位論文 前3條

1 胡國(guó)圣;基于遺傳算法和支持向量回歸的網(wǎng)格資源預(yù)測(cè)[D];吉林大學(xué);2010年

2 李濤;支持向量機(jī)在風(fēng)電功率預(yù)測(cè)中的應(yīng)用研究[D];北京交通大學(xué);2012年

3 管燕;基于非參數(shù)核密度估計(jì)方法的環(huán)境責(zé)任保險(xiǎn)保費(fèi)厘定研究[D];中國(guó)海洋大學(xué);2013年



本文編號(hào):2298689

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2298689.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9fc82***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com