天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

智能電網(wǎng)最優(yōu)潮流計(jì)算方法及其收斂性研究

發(fā)布時(shí)間:2018-10-09 08:38
【摘要】:在智能電網(wǎng)的環(huán)境下,潮流計(jì)算作為其基本的分析工具有著非常重要的地位。為了將電力系統(tǒng)經(jīng)濟(jì)性,安全性以及電能質(zhì)量三方面要求與潮流計(jì)算完美的結(jié)合起來,人們提出了最優(yōu)潮流計(jì)算。最優(yōu)潮流深受電力系統(tǒng)規(guī)劃設(shè)計(jì)人員和運(yùn)行調(diào)度人員的青睞,在電力系統(tǒng)規(guī)劃、運(yùn)行、分析和控制中起著重要的作用。本文首先針對(duì)牛頓法潮流計(jì)算的初值敏感性問題,提出了最優(yōu)初值選取方法。解決了由于初值選取不當(dāng)造成的潮流計(jì)算不收斂問題。其次,針對(duì)內(nèi)點(diǎn)法,簡(jiǎn)化梯度法等方法在最優(yōu)潮流計(jì)算中出現(xiàn)的初值敏感問題以及計(jì)算量過大等問題,提出了基于Fisher函數(shù)的廣義梯度投影最優(yōu)潮流算法。最后,為了使最優(yōu)潮流獲得更快的收斂速度,更方便的處理離散變量,運(yùn)用雙Hopfield神經(jīng)網(wǎng)絡(luò)來求解最優(yōu)潮流。文中的主要工作如下:(1)提出了牛頓法潮流計(jì)算的收斂性判據(jù),來判斷初值能否使潮流方程得到收斂解。若初值可行,根據(jù)所提出的最大迭代次數(shù)估計(jì)判據(jù),對(duì)潮流計(jì)算的迭代次數(shù)進(jìn)行初步估計(jì)。通過以上兩個(gè)判據(jù)可以對(duì)所選初值能否使潮流方程收斂進(jìn)行一個(gè)初步判斷,從而避免了初值任意選取造成的冗余計(jì)算。針對(duì)于牛頓法的初值敏感性問題,結(jié)合所提出的兩個(gè)判據(jù),利用遺傳算法提出了最優(yōu)初值的選取方法。IEEE標(biāo)準(zhǔn)節(jié)點(diǎn)系統(tǒng)和通遼電網(wǎng)的實(shí)例仿真結(jié)果可以證明所提出的最優(yōu)初值選取方法的有效性。(2)提出了基于Fisher函數(shù)的廣義梯度投影最優(yōu)潮流算法。該方法與簡(jiǎn)化梯度法相比,不必每次迭代都求解潮流方程,大大減少了計(jì)算量。并運(yùn)用動(dòng)態(tài)選取罰函數(shù)技術(shù),避免了由于罰函數(shù)選取不當(dāng)導(dǎo)致的病態(tài)條件數(shù)。與內(nèi)點(diǎn)法相比,擴(kuò)大了初值的選取范圍,避免了初值選取不當(dāng)導(dǎo)致收斂過程的不穩(wěn)定或使尋優(yōu)進(jìn)展緩慢。IEEE標(biāo)準(zhǔn)節(jié)點(diǎn)系統(tǒng)的仿真結(jié)果驗(yàn)證了該算法的有效性,并將簡(jiǎn)化梯度法,內(nèi)點(diǎn)法以及廣義梯度投影法最優(yōu)潮流計(jì)算分別運(yùn)用到通遼電網(wǎng)實(shí)例計(jì)算中,作出對(duì)比分析,仿真結(jié)果驗(yàn)證了基于Fisher函數(shù)的廣義的梯度投影法的快速收斂性和穩(wěn)定性。(3)運(yùn)用雙Hopfield神經(jīng)網(wǎng)絡(luò)來進(jìn)行最優(yōu)潮流計(jì)算。雙Hopfield神經(jīng)網(wǎng)絡(luò)分為兩個(gè)部分:首先,利用一個(gè)網(wǎng)絡(luò)來優(yōu)化罰函數(shù)項(xiàng),使解落在可行解子空間中。另一個(gè)網(wǎng)絡(luò)用來優(yōu)化目標(biāo)函數(shù),朝著目標(biāo)函數(shù)的可行下降方向進(jìn)行求解。兩個(gè)網(wǎng)絡(luò)是相互獨(dú)立的,交替運(yùn)行。雙Hopfield神經(jīng)網(wǎng)絡(luò)避免了Hopfield網(wǎng)絡(luò)求解最優(yōu)問題時(shí)既需滿足約束條件又需得到高質(zhì)量的解之間的矛盾,并且該算法極大的提高了計(jì)算速度。IEEE標(biāo)準(zhǔn)節(jié)點(diǎn)系統(tǒng)的仿真結(jié)果驗(yàn)證了雙Hopfield神經(jīng)網(wǎng)絡(luò)方法與Hopfield神經(jīng)網(wǎng)絡(luò)相比取得了更好的優(yōu)化效果。
[Abstract]:In the environment of smart grid, power flow calculation as its basic analysis tool has a very important position. In order to combine the three requirements of power system economy, security and power quality with the power flow calculation perfectly, people put forward the optimal power flow calculation. The optimal power flow is favored by the power system planners and dispatchers, and plays an important role in power system planning, operation, analysis and control. In this paper, an optimal initial value selection method is proposed to solve the sensitivity problem of Newtonian power flow calculation. The problem of non-convergence of power flow calculation caused by improper selection of initial value is solved. Secondly, a generalized gradient projection optimal power flow algorithm based on Fisher function is proposed to solve the initial value sensitivity problem and the excessive amount of calculation in the optimal power flow calculation by the interior point method and the simplified gradient method. Finally, in order to get faster convergence speed of optimal power flow and more convenient to deal with discrete variables, a double Hopfield neural network is used to solve the optimal power flow. The main work of this paper is as follows: (1) the convergence criterion of Newtonian power flow calculation is proposed to determine whether the initial value can converge the power flow equation. If the initial value is feasible, the iterative number of power flow calculation is estimated preliminarily according to the proposed criterion of maximum iterative degree estimation. Through the above two criteria, we can make a preliminary judgment on whether the selected initial value can make the power flow equation converge, thus avoiding the redundant calculation caused by the random selection of the initial value. In view of the sensitivity of the initial value of Newton's method, combined with the proposed two criteria, The simulation results of IEEE standard node system and Tongliao power network show that the proposed method is effective. (2) the generalized ladder based on Fisher function is proposed. Degree projection optimal power flow algorithm. Compared with the simplified gradient method, the proposed method does not have to solve the power flow equation every iteration, thus greatly reducing the computational complexity. The technique of dynamic selection of penalty function is used to avoid the ill-conditioned condition caused by improper selection of penalty function. Compared with the interior point method, the range of initial value selection is enlarged, and the instability of convergence process caused by improper initial value selection or the slow progress of optimization are avoided. The simulation results of IEEE standard node system verify the effectiveness of the algorithm and simplify the gradient method. The interior point method and the generalized gradient projection method are used to calculate the optimal power flow in Tongliao power network. The simulation results verify the fast convergence and stability of the generalized gradient projection method based on Fisher function. (3) double Hopfield neural network is used to calculate the optimal power flow. The dual Hopfield neural network is divided into two parts: first, a network is used to optimize the penalty function term, so that the solution falls in the feasible solution subspace. Another network is used to optimize the objective function and solve the problem in the direction of feasible descent of the objective function. The two networks are independent of each other and run alternately. The double Hopfield neural network avoids the contradiction between satisfying the constraint condition and obtaining the high quality solution when the Hopfield network is used to solve the optimal problem. The algorithm greatly improves the computation speed. The simulation results of IEEE-based standard node system verify that the dual Hopfield neural network method has better optimization effect than that of Hopfield neural network.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM744

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 胡德峰;張步涵;姚建光;;基于改進(jìn)粒子群算法的多目標(biāo)最優(yōu)潮流計(jì)算[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2007年03期

2 王魯,相年德,王世纓;應(yīng)用簡(jiǎn)化梯度法研究分布式并行最優(yōu)潮流計(jì)算[J];中國(guó)電機(jī)工程學(xué)報(bào);1991年S1期

3 劉敏華,鄭潔,嚴(yán)彩梅;基于可變?nèi)莶罘ǖ碾娏ο到y(tǒng)最優(yōu)潮流計(jì)算[J];電力自動(dòng)化設(shè)備;2003年11期

4 趙波,郭創(chuàng)新,曹一家;基于粒子群優(yōu)化算法和動(dòng)態(tài)調(diào)整罰函數(shù)的最優(yōu)潮流計(jì)算(英文)[J];電工技術(shù)學(xué)報(bào);2004年05期

5 俞俊霞,趙波;基于改進(jìn)粒子群優(yōu)化算法的最優(yōu)潮流計(jì)算[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2005年04期

6 劉耀年;李迎紅;張冰冰;李春亮;;基于人工魚群算法的最優(yōu)潮流計(jì)算[J];電工電能新技術(shù);2006年04期

7 李林川;李磊;黃海浪;;市場(chǎng)環(huán)境下考慮暫態(tài)穩(wěn)定約束的最優(yōu)潮流計(jì)算[J];天津大學(xué)學(xué)報(bào);2006年09期

8 崔鵬程;陳明榜;向鐵元;;基于粒子群優(yōu)化算法與混合罰函數(shù)法的最優(yōu)潮流計(jì)算[J];電網(wǎng)技術(shù);2006年S2期

9 林小朗;王磊;;改進(jìn)粒子群優(yōu)化算法的電力系統(tǒng)最優(yōu)潮流計(jì)算[J];廣東電力;2007年03期

10 黃濤;嚴(yán)正;劉福斌;楊立兵;;采用最優(yōu)潮流計(jì)算華東電力市場(chǎng)穩(wěn)定限額因子的方案研究[J];華東電力;2007年12期

相關(guān)會(huì)議論文 前6條

1 楊琳;孔峰;;基于梯度蜂群混合算法的電力系統(tǒng)最優(yōu)潮流計(jì)算[A];中南六。▍^(qū))自動(dòng)化學(xué)會(huì)第二十九屆學(xué)術(shù)年會(huì)論文集[C];2011年

2 胡罡;侯延進(jìn);劉震;;基于混合算法的最優(yōu)潮流計(jì)算[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年

3 崔鵬程;陳明榜;向鐵元;;基于粒子群優(yōu)化算法與混合罰函數(shù)法的最優(yōu)潮流計(jì)算[A];2006電力系統(tǒng)自動(dòng)化學(xué)術(shù)交流研討大會(huì)論文集[C];2006年

4 余健明;馬元社;張凡;;基于矢量距免疫算法的電力系統(tǒng)最優(yōu)潮流計(jì)算[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年

5 孫冰;黃倩;湯海燕;;基于PSASP的礦區(qū)電網(wǎng)多目標(biāo)最優(yōu)潮流計(jì)算分析[A];煤礦機(jī)電一體化新技術(shù)創(chuàng)新與發(fā)展2012學(xué)術(shù)年會(huì)論文集[C];2012年

6 游桂楊;韋化;陽育德;;基于Taylor級(jí)數(shù)法的暫態(tài)穩(wěn)定約束最優(yōu)潮流計(jì)算[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年

相關(guān)碩士學(xué)位論文 前5條

1 姜舒婷;直流電網(wǎng)中潮流控制器的影響及其配置方法研究[D];華北電力大學(xué);2015年

2 蔡超;智能電網(wǎng)最優(yōu)潮流計(jì)算方法及其收斂性研究[D];東北大學(xué);2014年

3 于贊梅;改進(jìn)粒子群優(yōu)化算法在最優(yōu)潮流計(jì)算中的應(yīng)用[D];華北電力大學(xué)(河北);2007年

4 李彬;考慮聯(lián)絡(luò)線暫態(tài)穩(wěn)定性約束的最優(yōu)潮流計(jì)算[D];天津大學(xué);2005年

5 潮鑄;基于二階軌跡靈敏度的暫態(tài)穩(wěn)定約束最優(yōu)潮流計(jì)算[D];華南理工大學(xué);2011年

,

本文編號(hào):2258695

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2258695.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c87ec***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产午夜福利片在线观看| 欧美大黄片在线免费观看| 亚洲国产av精品一区二区| 伊人欧美一区二区三区| 在线免费看国产精品黄片| 国产精品不卡高清在线观看| 人妻熟女欲求不满一区二区| 中国美女草逼一级黄片视频| 欧美日韩久久精品一区二区| 亚洲男女性生活免费视频| 久久夜色精品国产高清不卡| 国内精品偷拍视频久久| 欧美六区视频在线观看| 精品国产一区二区欧美| 国产欧美一区二区色综合| 国产精品免费自拍视频| 国产日韩久久精品一区| 99国产精品国产精品九九 | 国产日韩欧美一区二区| 东京热加勒比一区二区| 亚洲国产av在线观看一区| 加勒比日本欧美在线观看| 日本精品免费在线观看| 国产午夜福利在线免费观看| 国产精品欧美一区二区三区不卡 | 国产精品内射视频免费| 国产精品蜜桃久久一区二区| 日韩人妻中文字幕精品| 中文字幕精品一区二区三| 翘臀少妇成人一区二区| 亚洲国产另类久久精品| 精品少妇人妻av免费看| 加勒比东京热拍拍一区二区| 黄色国产自拍在线观看| 美女被后入视频在线观看| 国产精品欧美激情在线观看| 成人午夜激情免费在线| 老司机亚洲精品一区二区| 日韩一区二区三区嘿嘿| 丰满少妇被猛烈撞击在线视频| 婷婷色香五月综合激激情|