智能電網(wǎng)最優(yōu)潮流計(jì)算方法及其收斂性研究
[Abstract]:In the environment of smart grid, power flow calculation as its basic analysis tool has a very important position. In order to combine the three requirements of power system economy, security and power quality with the power flow calculation perfectly, people put forward the optimal power flow calculation. The optimal power flow is favored by the power system planners and dispatchers, and plays an important role in power system planning, operation, analysis and control. In this paper, an optimal initial value selection method is proposed to solve the sensitivity problem of Newtonian power flow calculation. The problem of non-convergence of power flow calculation caused by improper selection of initial value is solved. Secondly, a generalized gradient projection optimal power flow algorithm based on Fisher function is proposed to solve the initial value sensitivity problem and the excessive amount of calculation in the optimal power flow calculation by the interior point method and the simplified gradient method. Finally, in order to get faster convergence speed of optimal power flow and more convenient to deal with discrete variables, a double Hopfield neural network is used to solve the optimal power flow. The main work of this paper is as follows: (1) the convergence criterion of Newtonian power flow calculation is proposed to determine whether the initial value can converge the power flow equation. If the initial value is feasible, the iterative number of power flow calculation is estimated preliminarily according to the proposed criterion of maximum iterative degree estimation. Through the above two criteria, we can make a preliminary judgment on whether the selected initial value can make the power flow equation converge, thus avoiding the redundant calculation caused by the random selection of the initial value. In view of the sensitivity of the initial value of Newton's method, combined with the proposed two criteria, The simulation results of IEEE standard node system and Tongliao power network show that the proposed method is effective. (2) the generalized ladder based on Fisher function is proposed. Degree projection optimal power flow algorithm. Compared with the simplified gradient method, the proposed method does not have to solve the power flow equation every iteration, thus greatly reducing the computational complexity. The technique of dynamic selection of penalty function is used to avoid the ill-conditioned condition caused by improper selection of penalty function. Compared with the interior point method, the range of initial value selection is enlarged, and the instability of convergence process caused by improper initial value selection or the slow progress of optimization are avoided. The simulation results of IEEE standard node system verify the effectiveness of the algorithm and simplify the gradient method. The interior point method and the generalized gradient projection method are used to calculate the optimal power flow in Tongliao power network. The simulation results verify the fast convergence and stability of the generalized gradient projection method based on Fisher function. (3) double Hopfield neural network is used to calculate the optimal power flow. The dual Hopfield neural network is divided into two parts: first, a network is used to optimize the penalty function term, so that the solution falls in the feasible solution subspace. Another network is used to optimize the objective function and solve the problem in the direction of feasible descent of the objective function. The two networks are independent of each other and run alternately. The double Hopfield neural network avoids the contradiction between satisfying the constraint condition and obtaining the high quality solution when the Hopfield network is used to solve the optimal problem. The algorithm greatly improves the computation speed. The simulation results of IEEE-based standard node system verify that the dual Hopfield neural network method has better optimization effect than that of Hopfield neural network.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM744
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡德峰;張步涵;姚建光;;基于改進(jìn)粒子群算法的多目標(biāo)最優(yōu)潮流計(jì)算[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2007年03期
2 王魯,相年德,王世纓;應(yīng)用簡(jiǎn)化梯度法研究分布式并行最優(yōu)潮流計(jì)算[J];中國(guó)電機(jī)工程學(xué)報(bào);1991年S1期
3 劉敏華,鄭潔,嚴(yán)彩梅;基于可變?nèi)莶罘ǖ碾娏ο到y(tǒng)最優(yōu)潮流計(jì)算[J];電力自動(dòng)化設(shè)備;2003年11期
4 趙波,郭創(chuàng)新,曹一家;基于粒子群優(yōu)化算法和動(dòng)態(tài)調(diào)整罰函數(shù)的最優(yōu)潮流計(jì)算(英文)[J];電工技術(shù)學(xué)報(bào);2004年05期
5 俞俊霞,趙波;基于改進(jìn)粒子群優(yōu)化算法的最優(yōu)潮流計(jì)算[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2005年04期
6 劉耀年;李迎紅;張冰冰;李春亮;;基于人工魚群算法的最優(yōu)潮流計(jì)算[J];電工電能新技術(shù);2006年04期
7 李林川;李磊;黃海浪;;市場(chǎng)環(huán)境下考慮暫態(tài)穩(wěn)定約束的最優(yōu)潮流計(jì)算[J];天津大學(xué)學(xué)報(bào);2006年09期
8 崔鵬程;陳明榜;向鐵元;;基于粒子群優(yōu)化算法與混合罰函數(shù)法的最優(yōu)潮流計(jì)算[J];電網(wǎng)技術(shù);2006年S2期
9 林小朗;王磊;;改進(jìn)粒子群優(yōu)化算法的電力系統(tǒng)最優(yōu)潮流計(jì)算[J];廣東電力;2007年03期
10 黃濤;嚴(yán)正;劉福斌;楊立兵;;采用最優(yōu)潮流計(jì)算華東電力市場(chǎng)穩(wěn)定限額因子的方案研究[J];華東電力;2007年12期
相關(guān)會(huì)議論文 前6條
1 楊琳;孔峰;;基于梯度蜂群混合算法的電力系統(tǒng)最優(yōu)潮流計(jì)算[A];中南六。▍^(qū))自動(dòng)化學(xué)會(huì)第二十九屆學(xué)術(shù)年會(huì)論文集[C];2011年
2 胡罡;侯延進(jìn);劉震;;基于混合算法的最優(yōu)潮流計(jì)算[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
3 崔鵬程;陳明榜;向鐵元;;基于粒子群優(yōu)化算法與混合罰函數(shù)法的最優(yōu)潮流計(jì)算[A];2006電力系統(tǒng)自動(dòng)化學(xué)術(shù)交流研討大會(huì)論文集[C];2006年
4 余健明;馬元社;張凡;;基于矢量距免疫算法的電力系統(tǒng)最優(yōu)潮流計(jì)算[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
5 孫冰;黃倩;湯海燕;;基于PSASP的礦區(qū)電網(wǎng)多目標(biāo)最優(yōu)潮流計(jì)算分析[A];煤礦機(jī)電一體化新技術(shù)創(chuàng)新與發(fā)展2012學(xué)術(shù)年會(huì)論文集[C];2012年
6 游桂楊;韋化;陽育德;;基于Taylor級(jí)數(shù)法的暫態(tài)穩(wěn)定約束最優(yōu)潮流計(jì)算[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
相關(guān)碩士學(xué)位論文 前5條
1 姜舒婷;直流電網(wǎng)中潮流控制器的影響及其配置方法研究[D];華北電力大學(xué);2015年
2 蔡超;智能電網(wǎng)最優(yōu)潮流計(jì)算方法及其收斂性研究[D];東北大學(xué);2014年
3 于贊梅;改進(jìn)粒子群優(yōu)化算法在最優(yōu)潮流計(jì)算中的應(yīng)用[D];華北電力大學(xué)(河北);2007年
4 李彬;考慮聯(lián)絡(luò)線暫態(tài)穩(wěn)定性約束的最優(yōu)潮流計(jì)算[D];天津大學(xué);2005年
5 潮鑄;基于二階軌跡靈敏度的暫態(tài)穩(wěn)定約束最優(yōu)潮流計(jì)算[D];華南理工大學(xué);2011年
,本文編號(hào):2258695
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2258695.html