天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電力論文 >

光伏發(fā)電功率與氣象影響因子關(guān)聯(lián)關(guān)系的分析研究

發(fā)布時(shí)間:2018-10-05 16:04
【摘要】:可再生能源已成為我國(guó)應(yīng)對(duì)世界能源危機(jī)和經(jīng)濟(jì)發(fā)展新形勢(shì)的戰(zhàn)略新興產(chǎn)業(yè)。光伏發(fā)電作為可再生能源的重要組成部分近年來(lái)得到了快速發(fā)展,而大規(guī)模隨機(jī)波動(dòng)光伏發(fā)電的并網(wǎng)必將對(duì)電網(wǎng)的安全穩(wěn)定和調(diào)度運(yùn)行產(chǎn)生不利影響。對(duì)光伏發(fā)電的輸出功率進(jìn)行準(zhǔn)確預(yù)測(cè),是打破規(guī)模化光伏發(fā)電并網(wǎng)應(yīng)用瓶頸的有效措施。光伏發(fā)電功率受多元?dú)庀笠蛩氐挠绊,其預(yù)測(cè)模型輸入變量選取的是否合理直接影響預(yù)測(cè)精度。目前,關(guān)于光伏發(fā)電氣象影響因子作用程度的定量研究很少,本文針對(duì)光伏發(fā)電功率與多元?dú)庀笥绊懸蜃又g的動(dòng)態(tài)關(guān)聯(lián)關(guān)系開(kāi)展研究,為預(yù)測(cè)模型輸入變量的識(shí)別優(yōu)化與合理選取提供科學(xué)依據(jù),具有重要的理論意義和應(yīng)用價(jià)值。 本文在對(duì)比分析光伏發(fā)電功率與多元?dú)庀笥绊懸蜃幼兓?guī)律的基礎(chǔ)上,給出了氣象影響因子作用程度強(qiáng)弱的科學(xué)表示。首先,針對(duì)不同的氣象因素,通過(guò)散點(diǎn)圖和相關(guān)系數(shù)對(duì)其與光伏發(fā)電功率的相關(guān)性進(jìn)行了分析,并討論了不同天氣類型對(duì)相關(guān)性的影響。根據(jù)相關(guān)性的大小,確定輻照度、組件溫度、環(huán)境溫度和風(fēng)速為光伏發(fā)電功率的主氣象影響因子。在相關(guān)系數(shù)的基礎(chǔ)上,為了消除不同變量數(shù)值差異的影響,并考慮極值信息對(duì)關(guān)聯(lián)程度的作用,采用灰色關(guān)聯(lián)分析方法對(duì)氣象影響因子作用程度進(jìn)行了趨勢(shì)分析。計(jì)算光伏發(fā)電功率與氣象影響因子的灰色關(guān)聯(lián)度和因子權(quán)重系數(shù)用以衡量它們之間的關(guān)聯(lián)程度,并對(duì)不同歸一化方法的計(jì)算結(jié)果進(jìn)行了討論,指出0~1區(qū)間歸一化方法更適合。通過(guò)不同天氣類型下灰色關(guān)聯(lián)度和因子權(quán)重系數(shù)的對(duì)比,分析了氣象影響因子作用程度的變化趨勢(shì)。其次,由于光伏發(fā)電功率與氣象影響因子之間是多重耦合的非線性關(guān)系,利用線性的相關(guān)系數(shù)和灰色關(guān)聯(lián)度衡量氣象影響因子作用程度較難獲得滿意效果,為此,采用信息熵理論對(duì)光伏發(fā)電功率與氣象影響因子之間的動(dòng)態(tài)關(guān)聯(lián)關(guān)系進(jìn)行量化研究。從信息損失的角度,定義了光伏發(fā)電功率與氣象影響因子的互信息,選擇等間距法近似計(jì)算其值,并對(duì)不同天氣類型下互信息值的大小進(jìn)行了比較。從信息相對(duì)減少的角度,引入統(tǒng)計(jì)相關(guān)系數(shù)的概念,分析了光伏發(fā)電功率與氣象影響因子的相關(guān)性。利用互信息和統(tǒng)計(jì)相關(guān)系數(shù)給出了光伏發(fā)電功率與氣象影響因子動(dòng)態(tài)關(guān)聯(lián)關(guān)系的科學(xué)度量,,并根據(jù)不同數(shù)據(jù)源的歷史數(shù)據(jù),驗(yàn)證了量化研究的結(jié)果。最后,通過(guò)綜合對(duì)比,對(duì)相關(guān)分析、趨勢(shì)分析和量化研究三種不同方法進(jìn)行了評(píng)價(jià)。
[Abstract]:Renewable energy has become a strategic emerging industry in China to deal with the world energy crisis and the new situation of economic development. Photovoltaic power generation as an important part of renewable energy has been rapidly developed in recent years, and large-scale random fluctuations of photovoltaic power grid will inevitably have a negative impact on the security and stability of the grid and dispatching operation. Accurate prediction of the output power of photovoltaic power generation is an effective measure to break the bottleneck of grid-connected application of large-scale photovoltaic power generation. The power of photovoltaic generation is affected by multiple meteorological factors, and whether the input variables of the prediction model is reasonable or not has a direct impact on the prediction accuracy. At present, there are few quantitative studies on the effect of meteorological impact factors on photovoltaic power generation. This paper focuses on the dynamic correlation between photovoltaic power generation and multiple meteorological impact factors. It is of great theoretical significance and practical value to provide scientific basis for the identification, optimization and reasonable selection of input variables of prediction model. On the basis of comparing and analyzing the variation law of photovoltaic power generation power and multivariate meteorological influence factors, the scientific expression of the degree of action of meteorological influence factors is given in this paper. Firstly, according to different meteorological factors, the correlation between PV power and scattered plot and correlation coefficient is analyzed, and the influence of different weather types on the correlation is discussed. According to the correlation, the irradiance, module temperature, ambient temperature and wind speed are the main meteorological factors of photovoltaic power generation. Based on the correlation coefficient, in order to eliminate the influence of different variables and consider the effect of extreme value information on the correlation degree, the grey correlation analysis method is used to analyze the trend of meteorological influence factors. The grey correlation degree and factor weight coefficient of photovoltaic power and meteorological influence factors are calculated to measure the correlation degree between them. The results of different normalization methods are discussed and it is pointed out that the normalization method is more suitable in 0 ~ 1 interval. Based on the comparison of grey correlation degree and factor weight coefficient under different weather types, the change trend of the action degree of meteorological influence factors is analyzed. Secondly, because of the nonlinear relationship between photovoltaic power and meteorological impact factors, it is difficult to obtain satisfactory results by using linear correlation coefficient and grey correlation degree to measure the effect of meteorological impact factors. The information entropy theory is used to quantify the dynamic correlation between photovoltaic power and meteorological factors. From the point of view of information loss, the mutual information between photovoltaic power generation and meteorological influence factors is defined, and the value of mutual information under different weather types is calculated by the equal-distance method. From the point of view of relative reduction of information, the concept of statistical correlation coefficient is introduced to analyze the correlation between photovoltaic power generation and meteorological factors. Based on mutual information and statistical correlation coefficient, a scientific measure of dynamic correlation between photovoltaic power generation and meteorological impact factors is presented, and the results of quantitative research are verified according to historical data from different data sources. Finally, three different methods of correlation analysis, trend analysis and quantitative research are evaluated by comprehensive comparison.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM615

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳昌松;段善旭;殷進(jìn)軍;;基于神經(jīng)網(wǎng)絡(luò)的光伏陣列發(fā)電預(yù)測(cè)模型的設(shè)計(jì)[J];電工技術(shù)學(xué)報(bào);2009年09期

2 譚艷妮;譚忠富;;能源消費(fèi)結(jié)構(gòu)與經(jīng)濟(jì)增長(zhǎng)關(guān)聯(lián)關(guān)系的灰色分析方法[J];電力學(xué)報(bào);2009年01期

3 章堅(jiān)民;章謙之;王娜;鄭凌蔚;謝小高;;光伏電站電能采集系統(tǒng)的發(fā)電模型及參數(shù)率定[J];電力系統(tǒng)自動(dòng)化;2011年13期

4 朱永強(qiáng);田軍;;最小二乘支持向量機(jī)在光伏功率預(yù)測(cè)中的應(yīng)用[J];電網(wǎng)技術(shù);2011年07期

5 王守相;張娜;;基于灰色神經(jīng)網(wǎng)絡(luò)組合模型的光伏短期出力預(yù)測(cè)[J];電力系統(tǒng)自動(dòng)化;2012年19期

6 張艷霞;趙杰;;基于反饋型神經(jīng)網(wǎng)絡(luò)的光伏系統(tǒng)發(fā)電功率預(yù)測(cè)[J];電力系統(tǒng)保護(hù)與控制;2011年15期

7 楊志安,王光瑞,陳式剛;用等間距分格子法計(jì)算互信息函數(shù)確定延遲時(shí)間[J];計(jì)算物理;1995年04期

8 李芬;陳正洪;成馳;段善旭;;太陽(yáng)能光伏發(fā)電量預(yù)報(bào)方法的發(fā)展[J];氣候變化研究進(jìn)展;2011年02期

9 丁晶,王文圣,趙永龍;以互信息為基礎(chǔ)的廣義相關(guān)系數(shù)[J];四川大學(xué)學(xué)報(bào)(工程科學(xué)版);2002年03期

10 劉玉蘭;孫銀川;桑建人;左河疆;嚴(yán)曉瑜;馬篩艷;;影響太陽(yáng)能光伏發(fā)電功率的環(huán)境氣象因子診斷分析[J];水電能源科學(xué);2011年12期



本文編號(hào):2254012

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2254012.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1d7e0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com