天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

MFC脫氮產(chǎn)電性能及電導(dǎo)率研究

發(fā)布時(shí)間:2018-09-14 13:55
【摘要】:隨著經(jīng)濟(jì)的發(fā)展和人們生活水平的提高,排入自然界的氮素總量迅猛增加,破壞了自然界原有的氮素循環(huán),導(dǎo)致氮素循環(huán)中間產(chǎn)物(主要為氨、亞硝酸鹽和硝酸鹽)積累,造成環(huán)境污染,危害人類及生態(tài)系統(tǒng)。硝化、反硝化和厭氧氨氧化在氮素循環(huán)中發(fā)揮著重要作用,以此為基礎(chǔ)的硝化工藝、反硝化工藝和厭氧氨氧化工藝是廢水生物脫氮的主要技術(shù)。過程控制是生物脫氮工藝高效運(yùn)行的基礎(chǔ)。生物脫氮過程伴隨著離子種類和數(shù)量的改變,可導(dǎo)致反應(yīng)液電導(dǎo)率的改變。因此,有望以電導(dǎo)率指示生物脫氮過程性能,輔助過程控制。氨是微生物燃料電池(MFC)的潛在能源,構(gòu)建氨氧化微生物燃料電池(AO-MFC)和厭氧氨氧化微生物燃料電池(ANAMMOX-MFC),不但能夠同時(shí)實(shí)現(xiàn)治污和產(chǎn)電,還有望通過MFC的電信號(hào)變化實(shí)時(shí)反映生物脫氮過程性能,為過程控制提供信息。鑒上所述,筆者考察了生物脫氮過程性能與電導(dǎo)率變化的關(guān)系,研發(fā)了AO-MFC和ANAMMOX-MFC,并研究了其脫氮產(chǎn)電性能,主要結(jié)論如下: 1)建立了硝化、反硝化、厭氧氨氧化過程性能與離子強(qiáng)度及電導(dǎo)率變化的關(guān)系。研究結(jié)果表明:電導(dǎo)率與模擬廢水的離子強(qiáng)度近似成正比,與主要成分濃度呈顯著的線性關(guān)系;電導(dǎo)率能反映生物脫氮工藝容積負(fù)荷與容積效能、進(jìn)水濃度與出水濃度的大。浑妼(dǎo)率可用于指示生物脫氮過程性能的變化,也可用于輔助生物脫氮的過程控制。 2)探明了反硝化過程電導(dǎo)率變化的原因。反硝化過程消耗N03-,同時(shí)生成相同電荷數(shù)的HC03或CO32-,理論上反應(yīng)后不引起電導(dǎo)率降低。堿度衡算發(fā)現(xiàn):反硝化中產(chǎn)生C032-可引起反硝化過程電導(dǎo)率變化;相同離子電荷數(shù)的Na2CO3溶液電導(dǎo)率明顯小于NaNO3溶液;反硝化中產(chǎn)生的部分C032-與廢水中的Ca2+反應(yīng)形成CaC03沉淀,進(jìn)一步降低反應(yīng)液電導(dǎo)率。 3)研發(fā)了氨氧化微生物燃料電池,探明了溶解氧(DO)對(duì)硝化和產(chǎn)電性能的影響及其機(jī)理。研究結(jié)果表明:AO-MFC的最大氨氮轉(zhuǎn)化率為99.7%。穩(wěn)定產(chǎn)電期的輸出電壓為98.5±1.41mV,功率密度為9.70±0.27mW m-2。在AO-MFC系統(tǒng)中,氨釋放的電子分別流向氨單加氧酶(AMO)、 Cyt aa3氧化酶和電極,依次用于觸發(fā)氨氧化、合成ATP和產(chǎn)生電流,分子氧控制著三者之間的電子分配。DO濃度過高或過低都會(huì)削弱產(chǎn)電性能。 4)研發(fā)了厭氧氨氧化微生物燃料電池,探明了其脫氮和產(chǎn)電性能。研究結(jié)果表明:以厭氧氨氧化富集培養(yǎng)物(ANAMMOX Enrichment Culture, AEC)作為催化劑,以銨鹽和亞硝酸鹽作為反應(yīng)基質(zhì),/ANAMMOX-MFC可成功產(chǎn)電。ANAMMOX-MFC容積負(fù)荷(NLRs)和容積去除速率(NRRs)分別為1.72-2.57kg N m-3d-1、1.64-2.38kg N m-3d-1,氨氮和亞硝氮去除率分別為88.9%-98.3%、88.7%-97.2%。隨著基質(zhì)濃度的提高,ANAMMOX-MFC工作電壓從12.8mV逐步增大至131mV,其面積功率密度和體積功率密度分別從0.17mWm-2、1.08mWm-3上升至183mW m-2、115mW m-3。停止基質(zhì)供給,ANAMMOX-MFC產(chǎn)電性能急劇下降,恢復(fù)基質(zhì)供給,產(chǎn)電性能迅速恢復(fù)。/ANAMMOX-MFC產(chǎn)電性能易受陰極表面MnO2沉積所影響。
[Abstract]:With the development of economy and the improvement of people's living standard, the total amount of nitrogen discharged into nature increases rapidly, which destroys the original nitrogen cycle in nature, leads to the accumulation of intermediate products (mainly ammonia, nitrite and nitrate) in the nitrogen cycle, causes environmental pollution and endangers human beings and ecosystems. Nitrification, denitrification and anaerobic ammonia oxidation in nitrogen Nitrification process, denitrification process and anaerobic ammonia oxidation process are the main technologies for biological denitrification of wastewater. Process control is the basis for efficient operation of biological denitrification process. Ammonia is a potential energy source for microbial fuel cell (MFC). Ammonia-oxidized microbial fuel cell (AO-MFC) and anaerobic ammonia-oxidized microbial fuel cell (ANAMMOX-MFC) can be constructed, which can not only control pollution and generate electricity at the same time, but also can be real-time reversed by the change of electrical signal of MFC. In view of the above, the relationship between the performance of biological denitrification process and the change of conductivity was investigated, AO-MFC and ANAMMOOX-MFC were developed, and their denitrification and electricity production performance were studied.
1) The relationship between the performance of nitrification, denitrification and anaerobic ammonia oxidation process and the ionic strength and conductivity was established.The results showed that the ionic strength of the simulated wastewater was approximately proportional to the conductivity and the concentration of the main components was significantly linear. With the effluent concentration, conductivity can be used to indicate the change of biological nitrogen removal process performance, and also can be used to assist biological nitrogen removal process control.
2) The reason for the change of conductivity in denitrification process is found. The denitrification process consumes N03-, and produces HC03-, or CO32-, with the same charge number, which does not cause the decrease of conductivity in theory. CaC03 precipitation is formed by the reaction of C032-produced in denitrification with Ca2+ in wastewater, which further reduces the conductivity of the reaction solution.
3) Ammonia-oxidizing microbial fuel cells were developed to investigate the effects of dissolved oxygen (DO) on nitrification and electricity production. The results show that the maximum ammonia-nitrogen conversion rate of AO-MFC is 99.7%. The output voltage of AO-MFC is 98.5 (+ 1.41 mV) and the power density is 9.70 (+ 0.27 mW m-2). Ammonia monooxygenase (AMO), Cyt aa3 oxidase and electrodes, in turn, are used to trigger ammonia oxidation, synthesize ATP and generate current. Molecular oxygen controls the distribution of electrons among the three. Excessive or low DO concentration will weaken the power generation performance.
4) Anaerobic ammonia oxidation microbial fuel cell was developed, and Its Denitrification and electricity production performance were investigated. The results showed that using anaerobic ammonia oxidation enrichment culture (AEC) as catalyst, using ammonium salt and nitrite as reaction substrate, / ANAMMOX-MFC could produce electricity successfully. The removal rates of NRRs were 1.72-2.57 kg N m-3d-1,1.64-2.38 kg N m-3d-1,88.9% -98.3% for ammonia nitrogen and 88.7% -97.2% for nitrous nitrogen respectively. When the substrate supply was stopped, the power generation performance of ANAMMOX-MFC decreased sharply, the substrate supply was restored, and the power generation performance was restored rapidly.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:X703;TM911.45

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 詹亞力;王琴;閆光緒;郭紹輝;;高錳酸鉀作陰極的微生物燃料電池[J];高等學(xué);瘜W(xué)學(xué)報(bào);2008年03期

2 陳建偉;鄭平;丁爽;張吉強(qiáng);唐崇儉;;高效氣升循環(huán)式短程硝化工藝性能[J];化工學(xué)報(bào);2010年03期

3 ;Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge[J];Journal of Environmental Sciences;2004年01期

4 ;Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge[J];Journal of Environmental Sciences;2004年02期

5 張錦濤;周順桂;張禮霞;盧娜;鄧麗芳;倪晉仁;;產(chǎn)氣腸桿菌燃料電池產(chǎn)電機(jī)制研究[J];環(huán)境科學(xué);2009年04期

6 梁鵬;王慧勇;黃霞;曹效鑫;莫穎慧;;環(huán)境因素對(duì)接種Shewanella baltica的微生物燃料電池產(chǎn)電能力的影響[J];環(huán)境科學(xué);2009年07期

7 厲巍;鄭平;謝作甫;張萌;宋吉;黃慎敏;練國強(qiáng);;高效反硝化分段組合式反應(yīng)器運(yùn)行性能[J];化工學(xué)報(bào);2013年04期

8 張吉強(qiáng);鄭平;張萌;厲巍;陳慧;蔡琛;謝作甫;;AD-MFC中甲醇與硝酸鹽的偶合過程與作用機(jī)制[J];化工學(xué)報(bào);2013年09期

9 李穎;孫永明;孔曉英;李連華;袁振宏;楊秀山;;微生物燃料電池中產(chǎn)電微生物的研究進(jìn)展[J];微生物學(xué)通報(bào);2009年09期



本文編號(hào):2242902

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2242902.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4d3e6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com